Let K be a number field. We prove that the set of Mahler measures M(α), where α runs over every element of K, modulo 1 is everywhere dense in [0, 1], except when \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K\, = \,{\user2{\mathbb{Q}}}$$\end{document} or \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K\, = \,{\user2{\mathbb{Q}}}({\sqrt { - D} })$$\end{document}, where D is a positive integer. In the proof, we use a certain sequence of shifted Pisot numbers (or complex Pisot numbers) in K and show that the corresponding sequence of their Mahler measures modulo 1 is uniformly distributed in [0, 1].