共 50 条
Mahler measures in a field are dense modulo 1
被引:0
|作者:
Artūras Dubickas
机构:
[1] Vilnius University,Department of Mathematics and Informatics
来源:
关键词:
11K06;
11R06;
Mahler measure;
distribution modulo 1;
Pisot numbers;
complex Pisot numbers;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let K be a number field. We prove that the set of Mahler measures M(α), where α runs over every element of K, modulo 1 is everywhere dense in [0, 1], except when \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K\, = \,{\user2{\mathbb{Q}}}$$\end{document} or \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K\, = \,{\user2{\mathbb{Q}}}({\sqrt { - D} })$$\end{document}, where D is a positive integer. In the proof, we use a certain sequence of shifted Pisot numbers (or complex Pisot numbers) in K and show that the corresponding sequence of their Mahler measures modulo 1 is uniformly distributed in [0, 1].
引用
收藏
页码:29 / 34
页数:5
相关论文