Mahler measures in a field are dense modulo 1

被引:0
|
作者
Artūras Dubickas
机构
[1] Vilnius University,Department of Mathematics and Informatics
来源
Archiv der Mathematik | 2007年 / 88卷
关键词
11K06; 11R06; Mahler measure; distribution modulo 1; Pisot numbers; complex Pisot numbers;
D O I
暂无
中图分类号
学科分类号
摘要
Let K be a number field. We prove that the set of Mahler measures M(α), where α runs over every element of K, modulo 1 is everywhere dense in [0, 1], except when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\, = \,{\user2{\mathbb{Q}}}$$\end{document} or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\, = \,{\user2{\mathbb{Q}}}({\sqrt { - D} })$$\end{document}, where D is a positive integer. In the proof, we use a certain sequence of shifted Pisot numbers (or complex Pisot numbers) in K and show that the corresponding sequence of their Mahler measures modulo 1 is uniformly distributed in [0, 1].
引用
收藏
页码:29 / 34
页数:5
相关论文
共 50 条