A class of Schrödinger elliptic equations involving supercritical exponential growth

被引:0
作者
Yony Raúl Santaria Leuyacc
机构
[1] Universidad Nacional Mayor de San Marcos,Facultad de Ciencias Matemáticas
来源
Boundary Value Problems | / 2023卷
关键词
Schrödinger equations; Trudinger–Moser inequality; Supercritical exponential growth; Variational methods; 35J20; 35J47; 35J50; 26D10;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies the existence of nontrivial solutions to the following class of Schrödinger equations: {−div(w(x)∇u)=f(x,u),x∈B1(0),u=0,x∈∂B1(0),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textstyle\begin{cases} -\operatorname{div}(w(x)\nabla u) = f(x,u),&\ x \in B_{1}(0), \\ u = 0,&\ x \in \partial B_{1}(0), \end{cases} $$\end{document} where w(x)=(ln(1/|x|))β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$w(x)= (\ln (1/|x|) )^{\beta}$\end{document} for some β∈[0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta \in [0,1)$\end{document}, the nonlinearity f(x,s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(x,s)$\end{document} behaves like exp(|s|21−β+h(|x|))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\exp} (|s|^{\frac{2}{1-\beta}+h(|x|)} )$\end{document}, and h is a continuous radial function such that h(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$h(r)$\end{document} can be unbounded as r tends to 1. Our approach is based on a new Trudinger–Moser-type inequality for weighted Sobolev spaces and variational methods.
引用
收藏
相关论文
共 68 条
[51]  
Nguyen X.(undefined)undefined undefined undefined undefined-undefined
[52]  
Qin J.(undefined)undefined undefined undefined undefined-undefined
[53]  
Tang Y.R.(undefined)undefined undefined undefined undefined-undefined
[54]  
Zhang Y.R.(undefined)undefined undefined undefined undefined-undefined
[55]  
Santaria-Leuyacc S.H.M.(undefined)undefined undefined undefined undefined-undefined
[56]  
Santaria-Leuyacc Y.R.S.(undefined)undefined undefined undefined undefined-undefined
[57]  
Soares S.H.M.(undefined)undefined undefined undefined undefined-undefined
[58]  
Leuyacc Y.R.S.(undefined)undefined undefined undefined undefined-undefined
[59]  
Soares N.S.(undefined)undefined undefined undefined undefined-undefined
[60]  
Leuyacc V.(undefined)undefined undefined undefined undefined-undefined