A class of Schrödinger elliptic equations involving supercritical exponential growth

被引:0
作者
Yony Raúl Santaria Leuyacc
机构
[1] Universidad Nacional Mayor de San Marcos,Facultad de Ciencias Matemáticas
来源
Boundary Value Problems | / 2023卷
关键词
Schrödinger equations; Trudinger–Moser inequality; Supercritical exponential growth; Variational methods; 35J20; 35J47; 35J50; 26D10;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies the existence of nontrivial solutions to the following class of Schrödinger equations: {−div(w(x)∇u)=f(x,u),x∈B1(0),u=0,x∈∂B1(0),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textstyle\begin{cases} -\operatorname{div}(w(x)\nabla u) = f(x,u),&\ x \in B_{1}(0), \\ u = 0,&\ x \in \partial B_{1}(0), \end{cases} $$\end{document} where w(x)=(ln(1/|x|))β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$w(x)= (\ln (1/|x|) )^{\beta}$\end{document} for some β∈[0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta \in [0,1)$\end{document}, the nonlinearity f(x,s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(x,s)$\end{document} behaves like exp(|s|21−β+h(|x|))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\exp} (|s|^{\frac{2}{1-\beta}+h(|x|)} )$\end{document}, and h is a continuous radial function such that h(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$h(r)$\end{document} can be unbounded as r tends to 1. Our approach is based on a new Trudinger–Moser-type inequality for weighted Sobolev spaces and variational methods.
引用
收藏
相关论文
共 68 条
[1]  
Adimurthi S.L.(1990)Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the Ann. Sc. Norm. Super. Pisa, Cl. Sci. 3 393-413
[2]  
Adimurthi S.K.(1990)-Laplacian Ann. Sc. Norm. Super. Pisa, Cl. Sci. 4 481-504
[3]  
Yadava F.S.B.(2007)Multiplicity results for semilinear elliptic equations in a bounded domain of NoDEA Nonlinear Differ. Equ. Appl. 13 585-603
[4]  
Adimurthi C.O.(2014) involving critical exponent J. Math. Anal. Appl. 409 1021-1031
[5]  
Albuquerque E.S.(1996)A singular Moser–Trudinger embedding and its applications Potential Anal. 5 273-299
[6]  
Alves A.(1995)Nonlinear Schrödinger equation with unbounded or decaying radial potentials involving exponential critical growth in Proc. Am. Math. Soc. 123 3555-3561
[7]  
Medeiros V.(1986)Moser-type inequalities in Lorentz spaces Commun. Pure Appl. Math. 3 517-539
[8]  
Alvino G.(1983)On an elliptic equation with concave and convex nonlinearities Commun. Pure Appl. Math. 36 437-477
[9]  
Ferone T.(1980)Elliptic equations with limiting Sobolev exponents Commun. Partial Differ. Equ. 5 773-789
[10]  
Trombetti M.(2018)Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents Proc. Am. Math. Soc. 146 5243-5256