On the analogue of Weil’s converse theorem for Jacobi forms and their lift to half-integral weight modular forms

被引:0
|
作者
Yves Martin
Denis Osses
机构
[1] Universidad de Chile,Departamento de Matemáticas, Facultad de Ciencias
来源
The Ramanujan Journal | 2011年 / 26卷
关键词
Jacobi forms; Dirichlet series; Functional equations; 11F50; 11F37; 11F66;
D O I
暂无
中图分类号
学科分类号
摘要
We generalize Weil’s converse theorem to Jacobi cusp forms of weight k, index m and Dirichlet character χ over the group Γ0(N)⋉ℤ2. Then two applications of this result are given; we generalize a construction of Jacobi forms due to Skogman and present a new proof for several known lifts of such Jacobi forms to half-integral weight modular forms.
引用
收藏
页码:155 / 183
页数:28
相关论文
共 25 条
  • [21] ON THE STANDARD TWIST OF THE L-FUNCTIONS OF HALF-INTEGRAL WEIGHT CUSP FORMS
    Kaczorowski, Jerzy
    Perelli, Alberto
    NAGOYA MATHEMATICAL JOURNAL, 2020, 240 : 150 - 180
  • [22] On Fourier coefficients of modular forms of half integral weight at squarefree integers
    Y.-J. Jiang
    Y.-K. Lau
    G.-S. Lü
    E. Royer
    J. Wu
    Mathematische Zeitschrift, 2019, 293 : 789 - 808
  • [23] On Fourier coefficients of modular forms of half integral weight at squarefree integers
    Jiang, Y. -J.
    Lau, Y. -K.
    Lue, G. -S.
    Royer, E.
    Wu, J.
    MATHEMATISCHE ZEITSCHRIFT, 2019, 293 (1-2) : 789 - 808
  • [24] Koecher-Maass series of a certain half-integral weight modular form related to the Duke-Imamoglu-Ikeda lift
    Katsurada, Hidenori
    Kawamura, Hisa-aki
    ACTA ARITHMETICA, 2014, 162 (01) : 1 - 42
  • [25] A CERTAIN DIRICHLET SERIES OF RANKIN-SELBERG TYPE ASSOCIATED WITH THE IKEDA LIFT OF HALF-INTEGRAL WEIGHT
    Hayashida, Shuichi
    MATHEMATIKA, 2019, 65 (04) : 897 - 928