Over-expression of FaGalLDH Increases Ascorbic Acid Concentrations and Enhances Salt Stress Tolerance in Arabidopsis thaliana

被引:0
|
作者
Wanwan Dun
Xuan Wei
Lu Wang
Jingjing Liu
Jing Zhao
Peipei Sun
Congbing Fang
Xingbin Xie
机构
[1] Anhui Agricultural University,School of Horticulture
来源
Journal of Plant Biology | 2023年 / 66卷
关键词
 × ; Ascorbic acid (AsA); Antioxidase; Salt stress;
D O I
暂无
中图分类号
学科分类号
摘要
The strawberry (Fragaria × ananassa) is an economically important perennial crop plant, and its fruits are rich in vitamin C (l-ascorbic acid [AsA]) and other nutrients. l-galactono-1,4-lactone dehydrogenase (GalLDH) is a key enzyme in the terminal step of AsA biosynthesis pathway in plants. Here, the GalLDH gene (FaGalLDH) was cloned from ‘Benihoppe’ strawberries. AsA content increased during fruit development and peaked at the red-ripening stage, and AsA concentrations in different tissues were correlated with enzyme activity and transcription level of FaGalLDH. Transient over-expression of FaGalLDH in strawberry fruit increased its overall expression and AsA production significantly, whereas transient RNAi of FaGalLDH decreased its expression and AsA content. Furthermore, the optimum pH and temperature for FaGalLDH activity were 8.0 and 25 °C, respectively. Ectopic expression of the FaGalLDH gene in Arabidopsis resulted in higher AsA content and enzyme activity in transgenic lines than in wild-type plants. FaGalLDH over-expression resulted in enhanced tolerance to salt stress due to reduced accumulation of malondialdehyde, H2O2, and O2.−, as well as higher survival rates, root length, proline content, and superoxide dismutase, peroxidase, and catalase activities. These results provide useful information regarding AsA biosynthesis and salt tolerance, which may help to improve strawberry fruit quality and productivity.
引用
收藏
页码:35 / 46
页数:11
相关论文
共 50 条
  • [1] Over-expression of FaGalLDH Increases Ascorbic Acid Concentrations and Enhances Salt Stress Tolerance in Arabidopsis thaliana
    Dun, Wanwan
    Wei, Xuan
    Wang, Lu
    Liu, Jingjing
    Zhao, Jing
    Sun, Peipei
    Fang, Congbing
    Xie, Xingbin
    JOURNAL OF PLANT BIOLOGY, 2023, 66 (01) : 35 - 46
  • [2] Over-expression of ZmPti1, a homologue to Pti1, increases salt tolerance of Arabidopsis thaliana
    Zou, Huawen
    Wu, Zhongyi
    Zhang, Xiuhai
    Wang, Yongqin
    Huang, Conglin
    AFRICAN JOURNAL OF BIOTECHNOLOGY, 2010, 9 (05): : 656 - 662
  • [3] Over-expression of Arabidopsis ORANGE gene enhances drought stress tolerance through ABA-dependent pathway in Arabidopsis thaliana
    Shan, Yong-Jie
    Li, Dan
    Cao, Jing-Jing
    Zhang, Li
    Han, Li-Quan
    Zhang, Mei-Ping
    Shen, Zhen-Guo
    PLANT GROWTH REGULATION, 2022, 96 (01) : 91 - 101
  • [4] Over-expression of Arabidopsis ORANGE gene enhances drought stress tolerance through ABA-dependent pathway in Arabidopsis thaliana
    Yong-Jie Shan
    Dan Li
    Jing-Jing Cao
    Li Zhang
    Li-Quan Han
    Mei-Ping Zhang
    Zhen-Guo Shen
    Plant Growth Regulation, 2022, 96 : 91 - 101
  • [5] Over-expression of Topoisomerase II Enhances Salt Stress Tolerance in Tobacco
    John, Riffat
    Ganeshan, Uma
    Singh, Badri N.
    Kaul, Tanushri
    Reddy, Malireddy K.
    Sopory, Sudhir K.
    Rajam, Manchikatla V.
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [6] Over-expression of an Arabidopsis δ-OAT gene enhances salt and drought tolerance in transgenic rice
    Wu, LQ
    Fan, ZM
    Guo, L
    Li, YQ
    Zhang, WJ
    Qu, LJ
    Chen, ZL
    CHINESE SCIENCE BULLETIN, 2003, 48 (23): : 2594 - 2600
  • [7] Over-expression of Arabidopsis thaliana β-carotene hydroxylase (chyB) gene enhances drought tolerance in transgenic tobacco
    Qing Zhao
    Gang Wang
    Jing Ji
    Chao Jin
    Weidang Wu
    Jia Zhao
    Journal of Plant Biochemistry and Biotechnology, 2014, 23 : 190 - 198
  • [8] Over-expression of Arabidopsis thaliana β-carotene hydroxylase (chyB) gene enhances drought tolerance in transgenic tobacco
    Zhao, Qing
    Wang, Gang
    Ji, Jing
    Jin, Chao
    Wu, Weidang
    Zhao, Jia
    JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY, 2014, 23 (02) : 190 - 198
  • [9] Over-expression of miR397 improves plant tolerance to cold stress in Arabidopsis thaliana
    Dong, Chun-Hai
    Pei, Haixia
    JOURNAL OF PLANT BIOLOGY, 2014, 57 (04) : 209 - 217
  • [10] Over-expression of miR397 improves plant tolerance to cold stress in Arabidopsis thaliana
    Chun-Hai Dong
    Haixia Pei
    Journal of Plant Biology, 2014, 57 : 209 - 217