Stability of a generalization of Cauchy’s and the quadratic functional equations

被引:0
作者
Muaadh Almahalebi
机构
[1] University of Ibn Tofail,Department of Mathematics, Faculty of Sciences
来源
Journal of Fixed Point Theory and Applications | 2018年 / 20卷
关键词
Stability; hyperstability; Cauchy functional equation; quadratic functional equation; fixed point method; Banach space; 39B52; 54E50; 39B82;
D O I
暂无
中图分类号
学科分类号
摘要
Using the fixed point method, we investigate the stability of the following generalization of Cauchy’s and the quadratic functional equations ∑k=0n-1f(x+bky)=nf(x)+nf(y),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \sum _{k=0}^{n-1} f(x+ b_{k}y)=nf(x)+nf(y), \end{aligned}$$\end{document}where n∈N2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \in \mathbb {N}_{2}$$\end{document}, bk=exp(2iπkn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_{k}=\exp (\frac{2i\pi k}{n})$$\end{document} for 0≤k≤n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le k \le n-1$$\end{document}, in Banach spaces. Also, we prove the hyperstability results of this equation by the fixed point method.
引用
收藏
相关论文
共 36 条
[1]  
Almahalebi M(2016)On the hyperstability of Aequ. Math. 90 849-857
[2]  
Almahalebi M(2017)-Drygas functional equation on semigroups Aequ. Math. 91 647-661
[3]  
Chahbi A(1950)Hyperstability of the Jensen functional equation in ultrametric spaces J. Math. Soc. Jpn. 2 64-66
[4]  
Aoki T(2014)On the stability of the linear transformation in Banach spaces Acta Math. Hung. 142 353-365
[5]  
Bahyrycz A(2005)Hyperstability of the Jensen functional equation Proc. Am. Math. Soc. 133 1657-1664
[6]  
Piszczek M(1949)A general functional equation and its stability Duke Math. J. 16 385-397
[7]  
Baker JA(2011)Approximately isometric and multiplicative transformations on continuous function rings Nonlinear Anal. 74 6728-6732
[8]  
Bourgin DG(2013)A fixed point approach to stability of functional equations Aequ. Math. 86 255-267
[9]  
Brzdȩk J(2013)Remarks on hyperstability of the Cauchy functional equation Acta Math. Hung. 141 58-67
[10]  
Chudziak J(2011)Hyperstability of the Cauchy equation on restricted domains Nonlinear Anal. 74 6861-6867