Some potential-theoretic techniques in non-reversible Markov chains

被引:3
作者
Anandam V. [1 ]
机构
[1] The Institute of Mathematical Sciences, Chennai, 600113, C.I.T. Campus, Taramani
关键词
Dirichlet solution; Infinite networks with non-symmetric conductance; Random walks; Recurrence; Transience;
D O I
10.1007/s12215-013-0124-8
中图分类号
学科分类号
摘要
Many of the well known classification theorems of irreducible Markov chains X placing them into transient or recurrent classes are proved by assuming that X is reversible. It is shown here that the 'reversible' condition in X can be removed if potential-theoretic methods are used. © 2013 Springer-Verlag Italia.
引用
收藏
页码:273 / 284
页数:11
相关论文
共 10 条
  • [1] Abodayeh K., Anandam V., Potential-theoretic study of functions on an infinite network, Hokkaido Math. J., 37, pp. 59-73, (2008)
  • [2] Anandam V., Harmonic Functions and Potentials on Finite Or Infinite Networks. UMI Lecture Notes, (2011)
  • [3] Armitage D.H., Gardiner S.J., Classical Potential Theory, (2001)
  • [4] Foster F.G., On Markov chains with an enumerable infinity of states, Proc. Camb. Philos. Soc., 48, pp. 587-591, (1952)
  • [5] Kemeny J.G., Snell J.L., Knapp A.W., Denumerable Markov Chains, (1966)
  • [6] Lyons T., A simple criterion for transience of a reversible Markov chain, Ann. Probab., 11, pp. 393-402, (1983)
  • [7] McGuinness S., Recurrent networks and a theorem of Nash-Williams, J. Theor. Probab., 4, pp. 87-100, (1991)
  • [8] Nash-Williams C.S.J.A., Random walk and electric currents in networks, Proc. Camb. Philos. Soc., 55, pp. 181-195, (1959)
  • [9] Soardi P.M., Potential Theory on Infinite Networks. Lecture Notes in Mathematics, 1590, (1994)
  • [10] Yamasaki M., Discrete potentials on an infinite network, Mem. Fac. Sci. Shimane Univ., 13, pp. 31-44, (1979)