Tensor Fields of Type (0, 2) on the Tangent Bundle of a Riemannian Manifold

被引:0
|
作者
Maria del Carmen Calvo
Guillermo G. R. Keilhauer
机构
[1] Universidad de Buenos Aires,Departamento de Matemática
[2] Ciudad Universitaria,undefined
来源
Geometriae Dedicata | 1998年 / 71卷
关键词
connection map; tangent bundle; tensor field.;
D O I
暂无
中图分类号
学科分类号
摘要
To any (0, 2)-tensor field on the tangent bundle of a Riemannian manifold, we associate a global matrix function. Based on this fact, natural tensor fields are defined and characterized, essentially by means of well-known algebraic results. In the symmetric case, this classification coincides with the one given by Kowalski–Sekizawa; in the skew-symmetric one, it does with that obtained by Janyška.
引用
收藏
页码:209 / 219
页数:10
相关论文
共 50 条
  • [1] Tensor fields of type (0, 2) on the tangent bundle of a Riemannian manifold
    Calvo, MD
    Keilhauer, GGR
    GEOMETRIAE DEDICATA, 1998, 71 (02) : 209 - 219
  • [2] Natural tensor fields of type (0,2) on the tangent and cotangent bundles of a Fedosov manifold
    Araujo, Jose
    Keilhauer, Guillermo
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2006, 11 (02): : 11 - 19
  • [3] On the Tangent Bundle of a Hypersurface in a Riemannian Manifold
    Hou, Zhonghua
    Sun, Lei
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2015, 36 (04) : 579 - 602
  • [4] On the Tangent Bundle of a Hypersurface in a Riemannian Manifold
    Zhonghua HOU
    Lei SUN
    Chinese Annals of Mathematics(Series B), 2015, 36 (04) : 579 - 602
  • [5] On the tangent bundle of a hypersurface in a Riemannian manifold
    Zhonghua Hou
    Lei Sun
    Chinese Annals of Mathematics, Series B, 2015, 36 : 579 - 602
  • [6] A pseudo-Riemannian metric on the tangent bundle of a Riemannian manifold
    Eni, Cristian
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2008, 13 (02): : 35 - 42
  • [7] A NEW CLASS OF RIEMANNIAN METRICS ON TANGENT BUNDLE OF A RIEMANNIAN MANIFOLD
    Baghban, Amir
    Sababe, Saeed Hashemi
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 35 (04): : 1255 - 1267
  • [8] CH-TRANSFORMATIONS ON THE TANGENT BUNDLE OF A RIEMANNIAN MANIFOLD
    Hristov, Asen
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2012, 5 (01): : 78 - 84
  • [9] PROJECTIVE VECTOR FIELDS ON THE TANGENT BUNDLE WITH A CLASS OF RIEMANNIAN METRICS
    Gezer, Aydin
    Bilen, Lokman
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2018, 71 (05): : 587 - 596
  • [10] Some Relationships between the Geometry of the Tangent Bundle and the Geometry of the Riemannian Base Manifold
    Henry, Guillermo
    Keilhauer, Guillermo
    TOKYO JOURNAL OF MATHEMATICS, 2012, 35 (01) : 1 - 15