On the Structure of Dominating Graphs

被引:0
作者
Saeid Alikhani
Davood Fatehi
Sandi Klavžar
机构
[1] Yazd University,Department of Mathematics
[2] University of Ljubljana,Faculty of Mathematics and Physics
[3] University of Maribor,Faculty of Natural Sciences and Mathematics
[4] Institute of Mathematics,undefined
[5] Physics and Mechanics,undefined
来源
Graphs and Combinatorics | 2017年 / 33卷
关键词
Domination; Dominating graph; Paths and cycles; Domination polynomial;
D O I
暂无
中图分类号
学科分类号
摘要
The k-dominating graph Dk(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_k(G)$$\end{document} of a graph G is defined on the vertex set consisting of dominating sets of G with cardinality at most k, two such sets being adjacent if they differ by either adding or deleting a single vertex. A graph is a dominating graph if it is isomorphic to Dk(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_k(G)$$\end{document} for some graph G and some positive integer k. Answering a question of Haas and Seyffarth for graphs without isolates, it is proved that if G is such a graph of order n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document} and with G≅Dk(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\cong D_k(G)$$\end{document}, then k=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=2$$\end{document} and G≅K1,n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G \cong K_{1,n-1}$$\end{document} for some n≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 4$$\end{document}. It is also proved that for a given r there exist only a finite number of r-regular, connected dominating graphs of connected graphs. In particular, C6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_6$$\end{document} and C8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_8$$\end{document} are the only dominating graphs in the class of cycles. Some results on the order of dominating graphs are also obtained.
引用
收藏
页码:665 / 672
页数:7
相关论文
共 34 条
[21]  
Ito T(undefined)undefined undefined undefined undefined-undefined
[22]  
Mouawad AE(undefined)undefined undefined undefined undefined-undefined
[23]  
Nishimura N(undefined)undefined undefined undefined undefined-undefined
[24]  
Ono H(undefined)undefined undefined undefined undefined-undefined
[25]  
Suzuki A(undefined)undefined undefined undefined undefined-undefined
[26]  
Tebbal Y(undefined)undefined undefined undefined undefined-undefined
[27]  
McCuaig W(undefined)undefined undefined undefined undefined-undefined
[28]  
Shepherd B(undefined)undefined undefined undefined undefined-undefined
[29]  
Reed B(undefined)undefined undefined undefined undefined-undefined
[30]  
Sohn MY(undefined)undefined undefined undefined undefined-undefined