On the Structure of Dominating Graphs

被引:0
作者
Saeid Alikhani
Davood Fatehi
Sandi Klavžar
机构
[1] Yazd University,Department of Mathematics
[2] University of Ljubljana,Faculty of Mathematics and Physics
[3] University of Maribor,Faculty of Natural Sciences and Mathematics
[4] Institute of Mathematics,undefined
[5] Physics and Mechanics,undefined
来源
Graphs and Combinatorics | 2017年 / 33卷
关键词
Domination; Dominating graph; Paths and cycles; Domination polynomial;
D O I
暂无
中图分类号
学科分类号
摘要
The k-dominating graph Dk(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_k(G)$$\end{document} of a graph G is defined on the vertex set consisting of dominating sets of G with cardinality at most k, two such sets being adjacent if they differ by either adding or deleting a single vertex. A graph is a dominating graph if it is isomorphic to Dk(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_k(G)$$\end{document} for some graph G and some positive integer k. Answering a question of Haas and Seyffarth for graphs without isolates, it is proved that if G is such a graph of order n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document} and with G≅Dk(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\cong D_k(G)$$\end{document}, then k=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=2$$\end{document} and G≅K1,n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G \cong K_{1,n-1}$$\end{document} for some n≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 4$$\end{document}. It is also proved that for a given r there exist only a finite number of r-regular, connected dominating graphs of connected graphs. In particular, C6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_6$$\end{document} and C8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_8$$\end{document} are the only dominating graphs in the class of cycles. Some results on the order of dominating graphs are also obtained.
引用
收藏
页码:665 / 672
页数:7
相关论文
共 34 条
[1]  
Alikhani S(2013)The domination polynomial of a graph at Graphs Combin. 29 1175-1181
[2]  
Alikhani S(2010)Dominating sets and domination polynomials of certain graphs. II Opuscula Math. 30 37-51
[3]  
Peng YH(2014)Introduction to domination polynomial of a graph Ars Combin. 114 257-266
[4]  
Alikhani S(2015)Complete Graphs Combin. 31 1993-2002
[5]  
Peng YH(1973)-partite graphs determined by their domination polynomial Prikl. Mat. i Progr. 10 3-11
[6]  
Anthony BM(2010)An estimate of the external stability number of a graph without suspended vertices (in Russian) SIAM J. Discrete Math. 24 979-991
[7]  
Picollelli ME(2016)Domination game and an imagination strategy Graphs Combin. 32 511-519
[8]  
Blank MM(2011)Improved upper bounds on the domination number of graphs with minimum degree at least five Discuss. Math. Graph Theory 31 517-531
[9]  
Brešar B(2014)-graphs of graphs Graphs Combin. 30 609-617
[10]  
Klavžar S(2015)The Lect. Notes Comput. Sci. 9214 398-409