Exact solutions of perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity by improved tanϕξ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{tan}} \left( {\frac{{\boldsymbol{\phi}} \left( {\boldsymbol{\xi}} \right)}{{\textbf{2}}}} \right)$$\end{document}-expansion method

被引:0
作者
Naveed Ahmed
Amna Irshad
Syed Tauseef Mohyud-Din
Umar Khan
机构
[1] HITEC University,Department of Mathematics, Faculty of Sciences
[2] University of Islamabad (UoI),Department of Mathematics
[3] COMSATS Institute of Information Technology,undefined
关键词
Improved tan; -expansion method; Hyperbolic function solution; Trigonometric function solution; Rational solution the perturbed nonlinear Schödinger’s equation with Kerr law nonlinearity;
D O I
10.1007/s11082-017-1314-y
中图分类号
学科分类号
摘要
This paper carries out exact solutions of the perturbed nonlinear Schödinger’s equation withy Kerr law nonlinearity by using the improved tanϕξ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\frac{\phi \left( \xi \right)}{2}} \right)$$\end{document}-expansion method. The exact solutions contain four types: hyperbolic function solution, trigonometric function solution, exponential solution, and rational solution. The method appears to be easier and faster by means of symbolic computational system and can be applied to the other nonlinear evolution equations in mathematical physics.
引用
收藏
相关论文
共 109 条
[11]  
Biswas A(2010)New solitary wave solutions for generalized regularized long-wave equation Int. J. Comput. Math. 87 509-514
[12]  
Yildirim A(2008)Exact travelling wave solutions of the discrete nonlinear Schrödinger equation and the hybrid lattice equation obtained via the exp-function method Phys. Scr. 78 013-015
[13]  
Hayat T(2010)An irrational trial equation method and its applications Pramana J. Phys. 75 415-422
[14]  
Aldossary OM(2005)New exact solutions for (3 + 1)-dimensional Kadomtsev–Petviashvili equation and generalized (2 + 1)-dimensional Boussinesq equation Int. J. Nonlinear Sci. Numer. Simul. 6 151-162
[15]  
Sassaman R(1998)A note on the homogeneous balance method Phys. Lett. A 246 403-406
[16]  
Borhanifar A(2011)Application of the trial equation method for solving some nonlinear evolution equations arising in mathematical physics Pramana J. Phys. 77 1023-1029
[17]  
Kabir MM(2009)Nonlinear science as a fluctuating research frontier Chaos Solitons Fractals 41 2533-2537
[18]  
Borhanifar A(1973)Exact N-soliton of the wave equation of long waves in shallow water and in nonlinear lattices J. Math. Phys. 14 810-814
[19]  
Jafari H(1981)Soliton solution of a coupled KdV equation Phys. Lett. A 85 407-408
[20]  
Karimi SA(2010)Modified simple equation method for nonlinear evolution equations Appl. Math. Comput. 217 869-877