Exact solutions of perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity by improved tanϕξ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{tan}} \left( {\frac{{\boldsymbol{\phi}} \left( {\boldsymbol{\xi}} \right)}{{\textbf{2}}}} \right)$$\end{document}-expansion method

被引:0
作者
Naveed Ahmed
Amna Irshad
Syed Tauseef Mohyud-Din
Umar Khan
机构
[1] HITEC University,Department of Mathematics, Faculty of Sciences
[2] University of Islamabad (UoI),Department of Mathematics
[3] COMSATS Institute of Information Technology,undefined
关键词
Improved tan; -expansion method; Hyperbolic function solution; Trigonometric function solution; Rational solution the perturbed nonlinear Schödinger’s equation with Kerr law nonlinearity;
D O I
10.1007/s11082-017-1314-y
中图分类号
学科分类号
摘要
This paper carries out exact solutions of the perturbed nonlinear Schödinger’s equation withy Kerr law nonlinearity by using the improved tanϕξ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\frac{\phi \left( \xi \right)}{2}} \right)$$\end{document}-expansion method. The exact solutions contain four types: hyperbolic function solution, trigonometric function solution, exponential solution, and rational solution. The method appears to be easier and faster by means of symbolic computational system and can be applied to the other nonlinear evolution equations in mathematical physics.
引用
收藏
相关论文
共 109 条
[1]  
Abdelrahman MAE(2015)Exact traveling wave solutions for modified Liouville equation arising in mathematical physics and biology Int. J. Comput. Appl. 112 1-6
[2]  
Zahran EHM(2007)The extended f-expansion method and its application for a class of nonlinear evolution equations Chaos Solitons Fractals 31 95-104
[3]  
Khater MMA(2005)On an improved complex tanh-function method Int. J. Nonlinear Sci. Numer. Simul. 6 99-106
[4]  
Abdou MA(2008)Exact solutions for nonlinear evolution equations using Exp-function method Phys. Lett. A 372 1619-1625
[5]  
Abdusalam HA(2008)Soliton perturbation theory for the quadratic nonlinear Klein–Gordon equation Appl. Math. Comput. 203 153-156
[6]  
Bekir A(2012)Soliton perturbation theory for the generalized Klein–Gordon equation with full nonlinearity Proc. Romanian Acad. Ser. A 13 32-41
[7]  
Boz A(2009)New periodic and soliton solutions by application of exp-function method for nonlinear evolution equations Comput. Appl. Math. 229 158-167
[8]  
Biswas A(2008)New solitons and periodic solutions for the Kadomtsev–Petviashvili equation Nonlinear Sci. Appl. 4 224-229
[9]  
Zony C(2009)New solitary wave solutions for the bad Boussinesq and good Boussinesq equations Numer. Methods Partial Differ. Equ. 25 1231-1237
[10]  
Zerrad E(2009)New periodic and soliton wave solutions for the generalized Zakharov system and (2 + 1)-dimensional Nizhnik–Novikov–Veselov system Chaos, Solitons Fractals 42 1646-1654