Moduli spaces of toric manifolds

被引:0
作者
Á. Pelayo
A. R. Pires
T. S. Ratiu
S. Sabatini
机构
[1] Institute of Advanced Study,School of Mathematics
[2] Washington University,Mathematics Department
[3] Cornell University,Department of Mathematics
[4] Section de Mathématiques and Bernoulli Center,undefined
[5] Section de Mathématiques,undefined
来源
Geometriae Dedicata | 2014年 / 169卷
关键词
Toric manifold; Delzant polytope; Moduli space ; Metric space; MSC 53D20; MSC 53D05;
D O I
暂无
中图分类号
学科分类号
摘要
We construct a distance on the moduli space of symplectic toric manifolds of dimension four. Then we study some basic topological properties of this space, in particular, path-connectedness, compactness, and completeness. The construction of the distance is related to the Duistermaat–Heckman measure and the Hausdorff metric. While the moduli space, its topology and metric, may be constructed in any dimension, the tools we use in the proofs are four-dimensional, and hence so is our main result.
引用
收藏
页码:323 / 341
页数:18
相关论文
共 42 条
[1]  
Atiyah M(1982)Convexity and commuting Hamiltonians Bull. Lond. Math. Soc. 14 1-15
[2]  
Čech E(1937)On bicompact spaces Ann. Math. (2) 38 823-844
[3]  
Coffey J(2012)Symplectic geometry on moduli spaces of Ann. Glob. Anal. Geom. 41 265-280
[4]  
Kessler L(1988)-holomorphic curves Bull. Soc. Math. France 116 315-339
[5]  
Pelayo Á(1982)Hamiltoniens périodiques et images convexes de l’application moment Invent. Math. 69 259-268
[6]  
Delzant T(2009)On the variation in the cohomology of the symplectic form of the reduced phase space Math. Proc. Cambr. Phil. Soc. 146 695-718
[7]  
Duistermaat JJ(1994)Reduced phase space and toric variety coordinatizations of Delzant spaces J. Diff. Geom. 40 285-309
[8]  
Heckman GJ(1982)Kaehler structures on toric varieties Invent. Math. 67 491-513
[9]  
Duistermaat JJ(2006)Convexity properties of the moment mapping Geom. Topol. 10 1607-1634
[10]  
Pelayo Á(1997)Connectivity properties of moment maps on based loop groups L’Enseign. Math. 43 173-198