Asymptotically fault-tolerant programmable photonics

被引:0
作者
Ryan Hamerly
Saumil Bandyopadhyay
Dirk Englund
机构
[1] Research Laboratory of Electronics,
[2] MIT,undefined
[3] NTT Research Inc.,undefined
[4] Physics and Informatics Laboratories,undefined
来源
Nature Communications | / 13卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Component errors limit the scaling of programmable coherent photonic circuits. These errors arise because the standard tunable photonic coupler—the Mach-Zehnder interferometer (MZI)—cannot be perfectly programmed to the cross state. Here, we introduce two modified circuit architectures that overcome this limitation: (1) a 3-splitter MZI mesh for generic errors, and (2) a broadband MZI+Crossing design for correlated errors. Because these designs allow for perfect realization of the cross state, the matrix fidelity no longer degrades with increased mesh size, allowing scaling to arbitrarily large meshes. The proposed architectures support progressive self-configuration, are more compact than previous MZI-doubling schemes, and do not require additional phase shifters. This removes a key limitation to the development of very-large-scale programmable photonic circuits.
引用
收藏
相关论文
共 117 条
  • [1] Reck M(1994)Experimental realization of any discrete unitary operator Phys. Rev. Lett. 73 58-1465
  • [2] Zeilinger A(2016)Optimal design for universal multiport interferometers Optica 3 1460-716
  • [3] Bernstein HJ(2015)Universal linear optics Science 349 711-538
  • [4] Bertani P(2017)Deep learning with coherent nanophotonic circuits Nat. Photon. 11 441-859
  • [5] Clements WR(2013)Integrated microwave photonics Laser Photonics Rev. 7 506-28245
  • [6] Humphreys PC(2015)Programmable photonic signal processor chip for radiofrequency applications Optica 2 854-871
  • [7] Metcalf BJ(2017)Using an imperfect photonic network to implement random unitaries Opt. Express 25 28236-6370
  • [8] Kolthammer WS(2015)High-fidelity quantum state evolution in imperfect photonic integrated circuits Phys. Rev. A 92 032322-15
  • [9] Walmsley IA(2019)Matrix optimization on universal unitary photonic devices Phys. Rev. Appl. 11 064044-29248
  • [10] Carolan J(2018)Training of photonic neural networks through in situ backpropagation and gradient measurement Optica 5 864-1255