Factorization by quantum annealing using superconducting flux qubits implementing a multiplier Hamiltonian

被引:0
|
作者
Daisuke Saida
Mutsuo Hidaka
Kentaro Imafuku
Yuki Yamanashi
机构
[1] National Institute of Advanced Industrial Science and Technology,Device Research Institute
[2] Fujitsu Limited,Quantum laboratory
[3] Yokohama National University,School of Engineering Science
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Prime factorization (P = M × N) is a promising application for quantum computing. Shor’s algorithm is a key concept for breaking the limit for analyzing P, which cannot be effectively solved by classical computation; however, the algorithm requires error-correctable logical qubits. Here, we describe a quantum annealing method for solving prime factorization. A superconducting quantum circuit with native implementation of the multiplier Hamiltonian provides combinations of M and N as a solution for number P after annealing. This circuit is robust and can be expanded easily to scale up the analysis. We present an experimental and theoretical exploration of the multiplier unit. We demonstrate the 2-bit factorization in a circuit simulation and experimentally at 10 mK. We also explain how the current conditions can be used to obtain high success probability and all candidate factorized elements.
引用
收藏
相关论文
共 50 条
  • [21] Fast quantum information transfer with superconducting flux qubits coupled to a cavity
    Yang, Chui-Ping
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (20)
  • [22] Implementing quantum Fourier transform using three qubits
    Yachi, Mouhcine
    Hab-arrih, Radouan
    Jellal, Ahmed
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (18)
  • [23] COUPLING SUPERCONDUCTING FLUX QUBITS USING AC MAGNETIC FLXUES
    Liu, Yu-Xi
    Nori, Franco
    PROCEEDINGS OF THE 9TH INTERNATIONAL SYMPOSIUM ON FOUNDATIONS OF QUANTUM MECHANICS IN THE LIGHT OF NEW TECHNOLOGY, 2009, : 270 - 273
  • [24] Experimental Quantum Randomness Processing Using Superconducting Qubits
    Yuan, Xiao
    Liu, Ke
    Xu, Yuan
    Wang, Weiting
    Ma, Yuwei
    Zhang, Fang
    Yan, Zhaopeng
    Vijay, R.
    Sun, Luyan
    Ma, Xiongfeng
    PHYSICAL REVIEW LETTERS, 2016, 117 (01)
  • [25] Quantum information storage using tunable flux qubits
    Steffen, Matthias
    Brito, Frederico
    DiVincenzo, David
    Farinelli, Matthew
    Keefe, George
    Ketchen, Mark
    Kumar, Shwetank
    Milliken, Frank
    Rothwell, Mary Beth
    Rozen, Jim
    Koch, Roger H.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (05)
  • [26] Shortcuts to adiabatic for implementing controlled-not gate with superconducting quantum interference device qubits
    Ma, Ling-hui
    Kang, Yi-Hao
    Shi, Zhi-Cheng
    Song, Jie
    Xia, Yan
    QUANTUM INFORMATION PROCESSING, 2018, 17 (11)
  • [27] Shortcuts to adiabatic for implementing controlled-not gate with superconducting quantum interference device qubits
    Ling-hui Ma
    Yi-Hao Kang
    Zhi-Cheng Shi
    Jie Song
    Yan Xia
    Quantum Information Processing, 2018, 17
  • [28] Scalable universal holonomic quantum computation realized with an adiabatic quantum data bus and potential implementation using superconducting flux qubits
    Chancellor, Nicholas
    Haas, Stephan
    PHYSICAL REVIEW A, 2013, 87 (04):
  • [29] High-performance superconducting quantum processors via laser annealing of transmon qubits
    Zhang, Eric J.
    Srinivasan, Srikanth
    Sundaresan, Neereja
    Bogorin, Daniela F.
    Martin, Yves
    Hertzberg, Jared B.
    Timmerwilke, John
    Pritchett, Emily J.
    Yau, Jeng-Bang
    Wang, Cindy
    Landers, William
    Lewandowski, Eric P.
    Narasgond, Adinath
    Rosenblatt, Sami
    Keefe, George A.
    Lauer, Isaac
    Rothwell, Mary Beth
    McClure, Douglas T.
    Dial, Oliver E.
    Orcutt, Jason S.
    Brink, Markus
    Chow, Jerry M.
    SCIENCE ADVANCES, 2022, 8 (19)
  • [30] Controllably Coupling Superconducting Charge and Flux Qubits by Using Nanomechanical Resonator
    郭羊青
    姜年权
    Chinese Physics Letters, 2017, 34 (05) : 16 - 19