Factorization by quantum annealing using superconducting flux qubits implementing a multiplier Hamiltonian

被引:0
|
作者
Daisuke Saida
Mutsuo Hidaka
Kentaro Imafuku
Yuki Yamanashi
机构
[1] National Institute of Advanced Industrial Science and Technology,Device Research Institute
[2] Fujitsu Limited,Quantum laboratory
[3] Yokohama National University,School of Engineering Science
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Prime factorization (P = M × N) is a promising application for quantum computing. Shor’s algorithm is a key concept for breaking the limit for analyzing P, which cannot be effectively solved by classical computation; however, the algorithm requires error-correctable logical qubits. Here, we describe a quantum annealing method for solving prime factorization. A superconducting quantum circuit with native implementation of the multiplier Hamiltonian provides combinations of M and N as a solution for number P after annealing. This circuit is robust and can be expanded easily to scale up the analysis. We present an experimental and theoretical exploration of the multiplier unit. We demonstrate the 2-bit factorization in a circuit simulation and experimentally at 10 mK. We also explain how the current conditions can be used to obtain high success probability and all candidate factorized elements.
引用
收藏
相关论文
共 50 条
  • [1] Factorization by quantum annealing using superconducting flux qubits implementing a multiplier Hamiltonian
    Saida, Daisuke
    Hidaka, Mutsuo
    Imafuku, Kentaro
    Yamanashi, Yuki
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [2] 4-Bit Factorization Circuit Composed of Multiplier Units With Superconducting Flux Qubits Toward Quantum Annealing
    Saida, Daisuke
    Hidaka, Mutsuo
    Yamanashi, Yuki
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2025, 35 (01)
  • [3] Hamiltonian quantum computing with superconducting qubits
    Ciani, A.
    Terhal, B. M.
    DiVincenzo, D. P.
    QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (03)
  • [4] Demonstration of a Nonstoquastic Hamiltonian in Coupled Superconducting Flux Qubits
    Ozfidan, I
    Deng, C.
    Smirnov, A. Y.
    Lanting, T.
    Harris, R.
    Swenson, L.
    Whittaker, J.
    Altomare, F.
    Babcock, M.
    Baron, C.
    Berkley, A. J.
    Boothby, K.
    Christiani, H.
    Bunyk, P.
    Enderud, C.
    Evert, B.
    Hager, M.
    Hajda, A.
    Hilton, J.
    Huang, S.
    Hoskinson, E.
    Johnson, M. W.
    Jooya, K.
    Ladizinsky, E.
    Ladizinsky, N.
    Li, R.
    MacDonald, A.
    Marsden, D.
    Marsden, G.
    Medina, T.
    Molavi, R.
    Neufeld, R.
    Nissen, M.
    Norouzpour, M.
    Oh, T.
    Pavlov, I
    Perminov, I
    Poulin-Lamarre, G.
    Reis, M.
    Prescott, T.
    Rich, C.
    Sato, Y.
    Sterling, G.
    Tsai, N.
    Volkmann, M.
    Wilkinson, W.
    Yao, J.
    Amin, M. H.
    PHYSICAL REVIEW APPLIED, 2020, 13 (03)
  • [5] Obtaining Ground States of the XXZ Model Using the Quantum Annealing with Inductively Coupled Superconducting Flux Qubits
    Imoto, Takashi
    Seki, Yuya
    Matsuzaki, Yuichiro
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2022, 91 (06)
  • [6] Quantum Entanglement and Correlations in Superconducting Flux Qubits
    Herrera, Marcela
    Reina, John H.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2012, 25 (07) : 2149 - 2156
  • [7] Quantum Entanglement and Correlations in Superconducting Flux Qubits
    Marcela Herrera
    John H. Reina
    Journal of Superconductivity and Novel Magnetism, 2012, 25 : 2149 - 2156
  • [8] Quantum annealing with capacitive-shunted flux qubits
    Matsuzaki, Yuichiro
    Hakoshima, Hideaki
    Seki, Yuya
    Kawabata, Shiro
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2020, 59
  • [9] Flux-based superconducting qubits for quantum computation
    Orlando, TP
    Lloyd, S
    Levitov, LS
    Berggren, KK
    Feldman, MJ
    Bocko, MF
    Mooij, JE
    Harmans, CJP
    van der Wal, CH
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2002, 372 : 194 - 200
  • [10] Quantum information transfer with superconducting flux qubits coupled to a resonator
    Yang, Chui-Ping
    PHYSICAL REVIEW A, 2010, 82 (05):