Disposition of leucovorin and its metabolites in dietary folic acid-deplete mice – comparison between tumor, liver and plasma

被引:0
作者
K. Raghunathan
John C. Schmitz
D. G. Priest
机构
[1] Department of Biochemistry and Molecular Biology,
[2] Medical University of South Carolina,undefined
[3] 171 Ashley Avenue,undefined
[4] Charleston,undefined
[5] South Carolina 29425-2211,undefined
[6] USA Tel. (803)-792-4321; Fax (803)-792-4322,undefined
来源
Cancer Chemotherapy and Pharmacology | 1997年 / 40卷
关键词
Key words Reduced folates ;  Pharmacokinetics ;   Leucovorin ;  C3H mice ;  C3H mammary adenocarcinoma;
D O I
暂无
中图分类号
学科分类号
摘要
Purpose: A comprehensive pharmacokinetic study of leucovorin (5-formyltetrahydrofolate, 5-HCO-FH4) and its metabolites was conducted in plasma, liver and implanted tumor tissue from mice maintained on a low folic acid diet. While it has been previously demonstrated that the antitumor activity of fluorouracil (FU) can be potentiated by 5-HCO-FH4, the optimum time for administration of FU after 5-HCO-FH4, to maximally elevate the active folate metabolite methylenetetrahydrofolate in tumor has not been established. Human plasma studies have defined the pharmacokinetics of circulating 5-HCO-FH4 and its metabolites, but comparison with human tumor accumulation has not been practicable because of sampling difficulties. As an alternative, a mouse model system, based on low dietary folic acid, was used to evaluate plasma, liver and implanted tumor reduced folates after administration of 5-HCO-FH4.Methods: Plasma and tissue samples were collected from folate-deplete mice over a 12-h period after intraperitoneal administration of 90 mg/kg [R, S ] 5-HCO-FH4. Reduced folates were evaluated using a ternary complex assay. Results: The time at which max‐imal accumulation of parent compound and all metabolites, except 5-methyltetrahydrofolate (5-CH3FH4), occurred in tumor was the same as in plasma. Alternatively, peak liver accumulation was delayed relative to plasma for all folates except 5-CH3FH4. Conclusions: The results suggest that mouse plasma accumulation of reduced folates, with the exception of 5-CH3FH4, can predict tumor accumulation. Hence, evaluation of human plasma folate accumulation may potentially provide a means to improve the timing of the administration of FU relative to 5-HCO-FH4 to achieve a superior therapeutic outcome.
引用
收藏
页码:126 / 130
页数:4
相关论文
empty
未找到相关数据