Equivalent linear logistic test models

被引:0
|
作者
Timo M. Bechger
Huub H. F. M. Verstralen
Norman D. Verhelst
机构
[1] Cito,
[2] National Institute for Educational Measurement,undefined
[3] Cito,undefined
来源
Psychometrika | 2002年 / 67卷
关键词
item response theory (IRT); linear logistic test model; Lagrange multiplier test;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is about the Linear Logistic Test Model (LLTM). We demonstrate that there are infinitely many equivalent ways to specify a model. An implication is that there may well be many ways to change the specification of a given LLTM and achieve the same improvement in model fit. To illustrate this phenomenon, we analyze a real data set using a Lagrange multiplier test for the specification of the model. This Lagrange multiplier test is similar to the modification index used in structural equation modeling.
引用
收藏
页码:123 / 136
页数:13
相关论文
共 50 条
  • [1] Equivalent linear logistic test models
    Bechger, TM
    Verstralen, HHFM
    Verhelst, ND
    PSYCHOMETRIKA, 2002, 67 (01) : 123 - 136
  • [2] Remarks on "equivalent linear logistic test models" by Bechger, Verstralen, and Verhelst (2002)
    Fischer, GH
    PSYCHOMETRIKA, 2004, 69 (02) : 305 - 315
  • [3] Remarks on “equivalent linear logistic test models” by Bechger, Verstralen, and Verhelst (2002)
    Gerhard H. Fischer
    Psychometrika, 2004, 69 : 305 - 315
  • [4] Optimal Designs for Linear Logistic Test Models
    Grasshoff, Ulrike
    Holling, Heinz
    Schwabe, Rainer
    MODA 9 - ADVANCES IN MODEL-ORIENTED DESIGN AND ANALYSIS, 2010, : 97 - 104
  • [5] TEST OF LINEAR LOGISTIC AND BRADLEY-TERRY MODELS
    ATKINSON, AC
    BIOMETRIKA, 1972, 59 (01) : 37 - 42
  • [6] Analysis of the Latin Square Task with linear logistic test models
    Zeuch, Nina
    Holling, Heinz
    Kuhn, Joerg-Tobias
    LEARNING AND INDIVIDUAL DIFFERENCES, 2011, 21 (05) : 629 - 632
  • [7] ADVANTAGES AND POSSIBILITIES OF APPLICATION OF LINEAR LOGISTIC TEST MODELS IN AREA OF SOCIAL-SCIENCES
    SCHILDKAMPKUNDIGER
    THEORY AND DECISION, 1976, 7 (1-2) : 107 - 118
  • [8] Identifiability of nonlinear logistic test models
    Bechger, TM
    Verhelst, ND
    Verstralen, HHFM
    PSYCHOMETRIKA, 2001, 66 (03) : 357 - 371
  • [9] Identifiability of nonlinear logistic test models
    Timo M. Bechger
    Norman D. Verhelst
    Huub H. F. M. Verstralen
    Psychometrika, 2001, 66 : 357 - 371
  • [10] THE RANK SUM TEST IN THE LINEAR LOGISTIC MODEL
    DIETZ, EJ
    AMERICAN STATISTICIAN, 1985, 39 (04): : 322 - 325