A note on the exceptional set for Diophantine approximation with mixed powers of primes

被引:0
作者
Quanwu Mu
Zhipeng Gao
机构
[1] Xi’an Polytechnic University,School of Science
来源
The Ramanujan Journal | 2023年 / 60卷
关键词
Diophantine inequality; Prime; Davenport–Heilbronn method; Exceptional set; Primary 11D75; 11P55;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose that λ1,λ2,λ3,λ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _1, \lambda _2, \lambda _3, \lambda _4$$\end{document} are nonzero real numbers, not all negative, and λ1/λ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _1/\lambda _2$$\end{document} is irrational and algebraic. Let V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {V}$$\end{document} be a well-spaced sequence, δ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta >0$$\end{document}. It is proved that for any ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon >0$$\end{document}, the number of v∈V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in {\mathcal {V}}$$\end{document} with v≤N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\le N$$\end{document} for which |λ1p12+λ2p23+λ3p34+λ4p45-v|<v-δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} |\lambda _1p_1^2+\lambda _2p_2^3+\lambda _3p_3^4+\lambda _4p_4^5-v|<v^{-\delta } \end{aligned}$$\end{document}has no solution in primes p1,p2,p3,p4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1, p_2, p_3, p_4$$\end{document} does not exceed O(N347360+2δ+ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(N^{\frac{347}{360}+2\delta +\varepsilon })$$\end{document}. This result constitutes an improvement upon that of Ge and Zhao.
引用
收藏
页码:551 / 570
页数:19
相关论文
共 50 条
  • [1] A note on the exceptional set for Diophantine approximation with mixed powers of primes
    Mu, Quanwu
    Gao, Zhipeng
    RAMANUJAN JOURNAL, 2023, 60 (02) : 551 - 570
  • [2] Diophantine approximation with mixed powers of primes
    Yuhui Liu
    The Ramanujan Journal, 2021, 56 : 411 - 423
  • [3] Diophantine approximation with mixed powers of primes
    Fu, Linzhu
    Hu, Liqun
    Long, Xuan
    RAMANUJAN JOURNAL, 2025, 66 (04)
  • [4] Diophantine approximation with mixed powers of primes
    Liu, Yuhui
    RAMANUJAN JOURNAL, 2021, 56 (02) : 411 - 423
  • [5] On the exceptional set for Diophantine inequality with unlike powers of primes
    Huafeng Liu
    Rui Liu
    Lithuanian Mathematical Journal, 2024, 64 : 34 - 52
  • [6] A note on Diophantine approximation by unlike powers of primes
    Mu, Quanwu
    Qu, Yunyun
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2018, 14 (06) : 1651 - 1668
  • [7] On the exceptional set for Diophantine inequality with unlike powers of primes
    Liu, Huafeng
    Liu, Rui
    LITHUANIAN MATHEMATICAL JOURNAL, 2024, 64 (01) : 34 - 52
  • [8] Diophantine approximation with mixed powers of primes
    Ge, Wenxu
    Liu, Huake
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2018, 14 (07) : 1903 - 1918
  • [9] Diophantine Approximation with Mixed Powers of Primes
    Liu, Huafeng
    Huang, Jing
    TAIWANESE JOURNAL OF MATHEMATICS, 2019, 23 (05): : 1073 - 1090
  • [10] A note on Diophantine approximation with prime variables and mixed powers
    Liu, Huafeng
    RAMANUJAN JOURNAL, 2021, 56 (01) : 249 - 263