Numerical Radius Inequalities for Nonlinear Operators in Hilbert Spaces

被引:0
作者
Xiaomei Dong
Deyu Wu
机构
[1] Inner Mongolia University,School of Mathematical Sciences
来源
Mediterranean Journal of Mathematics | 2022年 / 19卷
关键词
Numerical radius inequalities; nonlinear operators; operator matrices; 47A12; 47A30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the numerical radius of nonlinear operators in Hilbert spaces is studied. First, the relationship between the spectral radius and the numerical radius of nonlinear operators is given. Then, the famous inequality 12‖T‖≤w(T)≤‖T‖\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2}\Vert T\Vert \le w(T)\le \Vert T\Vert $$\end{document} and inclusion σ(A-1B)⊆W(B)¯W(A)¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma (A^{-1}B)\subseteq \frac{\overline{W(B)}}{\overline{W(A)}}$$\end{document} of bounded linear operators are generalized to the case of certain nonlinear operators, where w(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w(\cdot )$$\end{document}, ‖·‖\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert \cdot \Vert $$\end{document} and σ(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma (\cdot )$$\end{document} are the numerical radius, the usual operator norm and the spectrum, respectively. Finally, some numerical radius inequalities for nonlinear operator matrices are obtained.
引用
收藏
相关论文
共 64 条
  • [21] Vignoli A(2014)Numerical range of two operators in Semi-inner product spaces J. Math. Anal. Appl. 411 1-18
  • [22] Gau HL(2001)Numerical radius inequalities for operator matrices Acta Math. Sin. 44 201-208
  • [23] Wang KZ(1967)The numerical range of nonlinear Banach space operators J. Math. Anal. Appl. 17 214-220
  • [24] Wu PY(2007)On the numerical radius of Lipschitz operators in Banach spaces Studia Math. 178 83-89
  • [25] Goldberg M(2019)Quantitative studies on nonlinear Lipschitz operators. V. Numerical ranges Linear Algebra Appl. 578 159-183
  • [26] Tadmor E(2019)Spectra of products and numerical ranges Linear Multilinear Algebra 67 2147-2158
  • [27] Hajmohamadi M(2021)On upper and lower bounds of the numerical radius and an equality condition Mediterr. J. Math. 18 1-13
  • [28] Lashkaripour R(undefined)A-numerical radius inequalities for semi-Hilbertian space operators undefined undefined undefined-undefined
  • [29] Bakherad M(undefined)Norm-parallelism and the Davis–Wielandt radius of Hilbert space operators undefined undefined undefined-undefined
  • [30] Hirzallah O(undefined)Numerical Radius Inequalities Concerning with Algebra Norms undefined undefined undefined-undefined