Numerical Radius Inequalities for Nonlinear Operators in Hilbert Spaces

被引:0
作者
Xiaomei Dong
Deyu Wu
机构
[1] Inner Mongolia University,School of Mathematical Sciences
来源
Mediterranean Journal of Mathematics | 2022年 / 19卷
关键词
Numerical radius inequalities; nonlinear operators; operator matrices; 47A12; 47A30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the numerical radius of nonlinear operators in Hilbert spaces is studied. First, the relationship between the spectral radius and the numerical radius of nonlinear operators is given. Then, the famous inequality 12‖T‖≤w(T)≤‖T‖\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2}\Vert T\Vert \le w(T)\le \Vert T\Vert $$\end{document} and inclusion σ(A-1B)⊆W(B)¯W(A)¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma (A^{-1}B)\subseteq \frac{\overline{W(B)}}{\overline{W(A)}}$$\end{document} of bounded linear operators are generalized to the case of certain nonlinear operators, where w(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w(\cdot )$$\end{document}, ‖·‖\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert \cdot \Vert $$\end{document} and σ(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma (\cdot )$$\end{document} are the numerical radius, the usual operator norm and the spectrum, respectively. Finally, some numerical radius inequalities for nonlinear operator matrices are obtained.
引用
收藏
相关论文
共 64 条
  • [1] Abu-Omar A(2015)Upper and lower bounds for the numerical radius with an application to involution operators Rocky Mt. J. Math. 45 1055-1064
  • [2] Kittaneh F(2019)A generalization of the numerical radius Linear Algebra Appl. 569 323-334
  • [3] Abu-Omar A(1973)Structure of operators with numerical radius one Acta Sci. Math. 34 11-15
  • [4] Kittaneh F(2006)Numerical ranges for pairs of operators, duality mappings with gauge function, and spectra of nonlinear operators Mediterr. J. Math. 3 1-13
  • [5] Ando T(2021)Bounds for the Davis–Wielandt radius of bounded linear operators Ann. Funct. Anal. 12 1-23
  • [6] Appell J(2021)-Numerical radius orthogonality and parallelism of semi-Hilbertian space operators and their applications Bull. Iran. Math. Soc. 47 435-457
  • [7] Buică A(2017)Numerical radius and product of elements in Linear Multilinear Algebra 65 1108-1116
  • [8] Bhunia P(2021)algebras Adv. Oper. Theory 6 1-18
  • [9] Bhanja A(1978)The Kachurovskij spectrum of Lipschitz continuous nonlinear block operator matrices Ann. Mat. Pura Appl. 118 229-294
  • [10] Bag S(2015)Contributions to the spectral theory for nonlinear operators in Banach spaces Linear Multilinear Algebra 63 1916-1936