On Modules Satisfying S-Noetherian Spectrum Condition

被引:0
作者
Mehmet Özen
Osama A. Naji
Ünsal Tekir
Suat Koç
机构
[1] Sakarya University,Department of Mathematics
[2] Marmara University,Department of Mathematics
来源
Communications in Mathematics and Statistics | 2023年 / 11卷
关键词
Noetherian modules; -Noetherian modules; Noetherian spectrum; -Noetherian spectrum condition; 13E05;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a commutative ring having nonzero identity and M be a unital R-module. Assume that S⊆R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\subseteq R$$\end{document} is a multiplicatively closed subset of R. Then, M satisfies S-Noetherian spectrum condition if for each submodule N of M, there exist s∈S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\in S$$\end{document} and a finitely generated submodule F⊆N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F\subseteq N$$\end{document} such that sN⊆radM(F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$sN\subseteq \text {rad}_{M}(F)$$\end{document}, where radM(F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {rad}_{M}(F)$$\end{document} is the prime radical of F in the sense (McCasland and Moore in Commun Algebra 19(5):1327–1341, 1991). Besides giving many properties and characterizations of S-Noetherian spectrum condition, we prove an analogous result to Cohen’s theorem for modules satisfying S-Noetherian spectrum condition. Moreover, we characterize modules having Noetherian spectrum in terms of modules satisfying the S-Noetherian spectrum condition.
引用
收藏
页码:649 / 662
页数:13
相关论文
共 30 条
[1]  
Ahmed H(2018)S-Noetherian spectrum condition Commun. Algebra 46 3314-3321
[2]  
Ameri R(2003)On the prime submodules of multiplication modules Int. J. Math. Math. Sci. 2003 1715-1724
[3]  
Anderson DD(2009)Idealization of a module J. Commut. Algebra 1 3-56
[4]  
Winders M(2002)S-Noetherian rings Commun. Algebra 30 4407-4416
[5]  
Anderson DD(1970)Subrings of Artinian and Noetherian rings Math. Ann. 185 247-249
[6]  
Dumitrescu T(1988)Multiplication modules Commun. Algebra 16 755-779
[7]  
Eisenbud D(1980)The Laskerian condition, power series rings and Noetherian spectra Proc. Am. Math. Soc. 79 13-16
[8]  
El-Bast ZA(1971)Locally Noetherian commutative rings Trans. Am. Math. Soc. 158 273-284
[9]  
Smith PE(2018)A characterization of commutative rings whose maximal ideal spectrum is Noetherian J. Algebra Appl. 17 1850003-168
[10]  
Gilmer R(1972)On Noetherian modules METU J. Pure Appl. Sci. 5 165-828