New sharp bounds for logarithmic mean and identric mean

被引:0
作者
Zhen-Hang Yang
机构
[1] Zhejiang Province Electric Power Test and Research Institute,System Division
来源
Journal of Inequalities and Applications | / 2013卷
关键词
logarithmic mean; identric mean; power mean; inequality;
D O I
暂无
中图分类号
学科分类号
摘要
For x,y>0 with x≠y, let L=L(x,y), I=I(x,y), A=A(x,y), G=G(x,y), Ar=A1/r(xr,yr) denote the logarithmic mean, identric mean, arithmetic mean, geometric mean and r-order power mean, respectively. We find the best constant p,q>0 such that the inequalities
引用
收藏
相关论文
共 41 条
[1]  
Ostle B(1957)A comparison of two means Proc. Mont. Acad. Sci 17 69-70
[2]  
Terwilliger HL(1960)Sur quélques problémes posés par Ramanujan J. Indian Math. Soc 24 343-365
[3]  
Karamata J(1984)Other property of the convex function Chin. Math. Bull 2 31-32
[4]  
Yang Z-H(1987)Exponential mean and logarithmic mean Math. Pract. Theory 4 76-78
[5]  
Yang Z-H(1988)Some integral inequalities Elem. Math 43 177-180
[6]  
Sándor J(1974)The power mean and the logarithmic mean Am. Math. Mon 81 879-883
[7]  
Lin TP(1994)The weighted logarithmic mean J. Math. Anal. Appl 188 885-900
[8]  
Neuman E(1972)The logarithmic mean Am. Math. Mon 79 615-618
[9]  
Carlson BC(1983)Extended mean values II J. Math. Anal. Appl 92 207-223
[10]  
Leach EB(1982)Quadrature formulae and analytic inequalities - on the separation of power means by logarithmic mean Hangzhou Daxue Xuebao 9 156-159