New a posteriori error estimates for hp version of finite element methods of nonlinear parabolic optimal control problems

被引:0
作者
Zuliang Lu
Hongyan Liu
Chunjuan Hou
Longzhou Cao
机构
[1] Chongqing Three Gorges University,Key Laboratory of Signal and Information Processing
[2] Chongqing Three Gorges University,Key Laboratory for Nonlinear Science and System Structure
[3] Tianjin University of Finance and Economics,Research Center for Mathematics and Economics
[4] Chongqing Wanzhou Long Bao Middle School,Huashang College
[5] Guangdong University of Finance,undefined
来源
Journal of Inequalities and Applications | / 2016卷
关键词
residual-based ; error estimates; nonlinear parabolic optimal control problems; version of finite element method; 49J20; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate residual-based a posteriori error estimates for the hp version of the finite element approximation of nonlinear parabolic optimal control problems. By using the hp finite element approximation for both the state and the co-state variables and the hp discontinuous Galerkin finite element approximation for the control variable, we derive hp residual-based a posteriori error estimates for both the state and the control approximation. Such estimates, which are apparently not available in the literature, can be used to construct a reliable hp adaptive finite element approximation for the nonlinear parabolic optimal control problems.
引用
收藏
相关论文
共 44 条
[11]  
Iliash Y(1989)-FEM Comput. Methods Appl. Mech. Eng. 77 113-180
[12]  
Iyyunni C(1990)The Comput. Methods Appl. Mech. Eng. 80 5-26
[13]  
Sweilam NH(1990)-version of the finite element method with quasiuniform meshes Comput. Methods Appl. Mech. Eng. 80 319-325
[14]  
Kröner A(1996)Toward a universal Comput. Methods Appl. Mech. Eng. 133 319-346
[15]  
Vexler B(1998)- SIAM J. Numer. Anal. 35 632-654
[16]  
Kunisch K(2005) adaptive finite element strategy, part 2. A posteriori error estimation SIAM J. Numer. Anal. 43 127-155
[17]  
Liu W(2005)The Contemp. Math. 383 113-132
[18]  
Chang Y(2003)- and Numer. Math. 93 497-521
[19]  
Yan N(2011)- J. Comput. Appl. Math. 235 3435-3454
[20]  
Li R(1985) version of the finite element method, an overview Math. Comput. 44 303-320