Generic Well-Posedness for a Class of Equilibrium Problems

被引:0
|
作者
Alexander J. Zaslavski
机构
[1] The Technion-Israel Institute of Technology,Department of Mathematics
来源
Journal of Inequalities and Applications | / 2008卷
关键词
Continuous Function; Unique Solution; Natural Number; Equilibrium Problem; Open Neighborhood;
D O I
暂无
中图分类号
学科分类号
摘要
We study a class of equilibrium problems which is identified with a complete metric space of functions. For most elements of this space of functions (in the sense of Baire category), we establish that the corresponding equilibrium problem possesses a unique solution and is well-posed.
引用
收藏
相关论文
共 50 条
  • [1] Generic well-posedness for a class of equilibrium problems
    Zaslavski, Alexander J.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2008, 2008 (1)
  • [2] Well-posedness for a class of strong vector equilibrium problems
    Yang Yanlong
    Deng Xicai
    Xiang Shuwen
    Jia Wensheng
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (01): : 84 - 91
  • [3] Generic well-posedness in minimization problems
    Ioffe, A.
    Lucchetti, R. E.
    ABSTRACT AND APPLIED ANALYSIS, 2005, (04) : 343 - 360
  • [4] A GENERIC WELL-POSEDNESS RESULT FOR A CLASS OF NONCONVEX OPTIMAL CONTROL PROBLEMS
    Zaslavski, Alexander J.
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2007, 8 (02) : 289 - 309
  • [5] Well-posedness for vector equilibrium problems
    Bianchi, M.
    Kassay, G.
    Pini, R.
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2009, 70 (01) : 171 - 182
  • [6] Well-posedness for vector equilibrium problems
    M. Bianchi
    G. Kassay
    R. Pini
    Mathematical Methods of Operations Research, 2009, 70 : 171 - 182
  • [7] WELL-POSEDNESS OF SYSTEMS OF EQUILIBRIUM PROBLEMS
    Hu, Rong
    Fang, Ya-Ping
    Huang, Nan-Jing
    Wong, Mu-Ming
    TAIWANESE JOURNAL OF MATHEMATICS, 2010, 14 (06): : 2435 - 2446
  • [8] Generic Well-Posedness of Fixed Point Problems
    Reich S.
    Zaslavski A.J.
    Vietnam Journal of Mathematics, 2018, 46 (1) : 5 - 13
  • [9] Well-posedness for equilibrium problems and for optimization problems with equilibrium constraints
    Fang, Ya-Ping
    Hu, Rong
    Huang, Nan-Jing
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (01) : 89 - 100
  • [10] Generic Existence of Solutions and Generic Well-Posedness of Optimization Problems
    Kenderov, P. S.
    Revalski, J. P.
    COMPUTATIONAL AND ANALYTICAL MATHEMATICS: IN HONOR OF JONATHAN BORWEIN'S 60TH BIRTHDAY, 2013, 50 : 445 - 453