On Transferring Model Theoretic Theorems of L∞,ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}_{{\infty},\omega}}$$\end{document} in the Category of Sets to a Fixed Grothendieck Topos

被引:0
作者
Nathanael Leedom Ackerman
机构
[1] Harvard University,Department of Mathematics
关键词
03G30; 18C99; 03C90; 03C75; 03C30; Model theory; infinitary logic; Grothendieck topos; Löwenheim–Skolem; completeness; Barwise compactness;
D O I
10.1007/s11787-014-0105-5
中图分类号
学科分类号
摘要
Working in a fixed Grothendieck topos Sh(C, JC) we generalize L∞,ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}_{{\infty},\omega}}$$\end{document} to allow our languages and formulas to make explicit reference to Sh(C, JC). We likewise generalize the notion of model. We then show how to encode these generalized structures by models of a related sentence of L∞,ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}_{{\infty},\omega}}$$\end{document} in the category of sets and functions. Using this encoding we prove analogs of several results concerning L∞,ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}_{{\infty},\omega}}$$\end{document}, such as the downward Löwenheim–Skolem theorem, the completeness theorem and Barwise compactness.
引用
收藏
页码:345 / 391
页数:46
相关论文
共 2 条
[1]  
Ackerman N.L.(2013)Completeness in generalized ultrametric spaces. p-Adic Numbers Ultrametric Anal Appl. 5 89-105
[2]  
Ackerman N.L.(2010)Relativized Grothendieck topoi Ann. Pure Appl. Logic 161 1299-1312