Parameterized Complexity of Superstring Problems

被引:0
|
作者
Ivan Bliznets
Fedor V. Fomin
Petr A. Golovach
Nikolay Karpov
Alexander S. Kulikov
Saket Saurabh
机构
[1] St. Petersburg Department of Steklov Institute of Mathematics of the Russian Academy of Sciences,Department of Informatics
[2] University of Bergen,undefined
[3] Institute of Mathematical Sciences,undefined
来源
Algorithmica | 2017年 / 79卷
关键词
Shortest superstring; Parameterized complexity; Kernelization;
D O I
暂无
中图分类号
学科分类号
摘要
In the Shortest Superstring problem we are given a set of strings S={s1,…,sn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S=\{s_1, \ldots , s_n\}$$\end{document} and integer ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} and the question is to decide whether there is a superstring s of length at most ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} containing all strings of S as substrings. We obtain several parameterized algorithms and complexity results for this problem. In particular, we give an algorithm which in time 2O(k)poly(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\mathcal {O}(k)} {\text {poly}}(n)$$\end{document} finds a superstring of length at most ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} containing at least k strings of S. We complement this by a lower bound showing that such a parameterization does not admit a polynomial kernel up to some complexity assumption. We also obtain several results about “below guaranteed values” parameterization of the problem. We show that parameterization by compression admits a polynomial kernel while parameterization “below matching” is hard.
引用
收藏
页码:798 / 813
页数:15
相关论文
共 50 条
  • [41] On the Parameterized Complexity of Dynamic Problems with Connectivity Constraints
    Abu-Khzam, Faisal N.
    Egan, Judith
    Fellows, Michael R.
    Rosamond, Frances A.
    Shaw, Peter
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS (COCOA 2014), 2014, 8881 : 625 - 636
  • [42] Parameterized complexity of cardinality constrained optimization problems
    Cai, Leizhen
    COMPUTER JOURNAL, 2008, 51 (01): : 102 - 121
  • [43] On the parameterized complexity of [1, j]-domination problems
    Meybodi, Mohsen Alambardar
    Fomin, Fedor, V
    Mouawad, Amer E.
    Panolan, Fahad
    THEORETICAL COMPUTER SCIENCE, 2020, 804 : 207 - 218
  • [44] Parameterized Complexity of Sparse Linear Complementarity Problems
    Hanna Sumita
    Naonori Kakimura
    Kazuhisa Makino
    Algorithmica, 2017, 79 : 42 - 65
  • [45] The parameterized complexity of some minimum label problems
    Fellows, Michael R.
    Guo, Jiong
    Kanj, Iyad
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2010, 76 (08) : 727 - 740
  • [46] Parameterized Complexity of Even/Odd Subgraph Problems
    Cai, Leizhen
    Yang, Boting
    ALGORITHMS AND COMPLEXITY, PROCEEDINGS, 2010, 6078 : 85 - +
  • [47] On the complexity of some colorful problems parameterized by treewidth
    Fellows, Michael
    Fornin, Fedor V.
    Lokshtanov, Daniel
    Rosamond, Frances
    Saurabh, Saket
    Szeider, Stefan
    Thomassen, Carsten
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, PROCEEDINGS, 2007, 4616 : 366 - +
  • [48] Parameterized complexity of cardinality constrained optimization problems
    Cai, Leizhen
    Computer Journal, 2008, 51 (01): : 102 - 121
  • [49] Parameterized Complexity of Sparse Linear Complementarity Problems
    Sumita, Hanna
    Kakimura, Naonori
    Makino, Kazuhisa
    ALGORITHMICA, 2017, 79 (01) : 42 - 65
  • [50] The Parameterized Complexity of Some Minimum Label Problems
    Fellows, Michael R.
    Guo, Jiong
    Kanj, Iyad A.
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2010, 5911 : 88 - +