Parameterized Complexity of Superstring Problems

被引:0
|
作者
Ivan Bliznets
Fedor V. Fomin
Petr A. Golovach
Nikolay Karpov
Alexander S. Kulikov
Saket Saurabh
机构
[1] St. Petersburg Department of Steklov Institute of Mathematics of the Russian Academy of Sciences,Department of Informatics
[2] University of Bergen,undefined
[3] Institute of Mathematical Sciences,undefined
来源
Algorithmica | 2017年 / 79卷
关键词
Shortest superstring; Parameterized complexity; Kernelization;
D O I
暂无
中图分类号
学科分类号
摘要
In the Shortest Superstring problem we are given a set of strings S={s1,…,sn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S=\{s_1, \ldots , s_n\}$$\end{document} and integer ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} and the question is to decide whether there is a superstring s of length at most ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} containing all strings of S as substrings. We obtain several parameterized algorithms and complexity results for this problem. In particular, we give an algorithm which in time 2O(k)poly(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\mathcal {O}(k)} {\text {poly}}(n)$$\end{document} finds a superstring of length at most ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} containing at least k strings of S. We complement this by a lower bound showing that such a parameterization does not admit a polynomial kernel up to some complexity assumption. We also obtain several results about “below guaranteed values” parameterization of the problem. We show that parameterization by compression admits a polynomial kernel while parameterization “below matching” is hard.
引用
收藏
页码:798 / 813
页数:15
相关论文
共 50 条
  • [31] MORE ON THE COMPLEXITY OF COMMON SUPERSTRING AND SUPERSEQUENCE PROBLEMS
    MIDDENDORF, M
    THEORETICAL COMPUTER SCIENCE, 1994, 125 (02) : 205 - 228
  • [32] Parameterized complexity of constraint satisfaction problems
    Dániel Marx
    computational complexity, 2005, 14 : 153 - 183
  • [33] Incremental Problems in the Parameterized Complexity Setting
    Bernard Mans
    Luke Mathieson
    Theory of Computing Systems, 2017, 60 : 3 - 19
  • [34] Parameterized Complexity of Fair Deletion Problems
    Masarik, Tomas
    Toufar, Tomas
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION (TAMC 2017), 2017, 10185 : 627 - 641
  • [35] Parameterized Complexity of Edge Interdiction Problems
    Guo, Jiong
    Shrestha, Yash Raj
    COMPUTING AND COMBINATORICS, COCOON 2014, 2014, 8591 : 166 - 178
  • [36] On the complexity of some colorful problems parameterized by treewidth
    Fellows, Michael R.
    Fomin, Fedor V.
    Lokshtanov, Daniel
    Rosamond, Frances
    Saurabh, Saket
    Szeider, Stefan
    Thomassen, Carsten
    INFORMATION AND COMPUTATION, 2011, 209 (02) : 143 - 153
  • [37] Parameterized Complexity of Streaming Diameter and Connectivity Problems
    Oostveen, Jelle J.
    van Leeuwen, Erik Jan
    ALGORITHMICA, 2024, 86 (09) : 2885 - 2928
  • [38] Parameterized complexity of control problems in Maximin election
    Liu, Hong
    Zhu, Daming
    INFORMATION PROCESSING LETTERS, 2010, 110 (10) : 383 - 388
  • [39] Parameterized Complexity of Connected Induced Subgraph Problems
    Cai, Leizhen
    Ye, Junjie
    ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, AAIM 2014, 2014, 8546 : 219 - 230
  • [40] Parameterized complexity of even/odd subgraph problems
    Cai, Leizhen
    Yang, Boting
    JOURNAL OF DISCRETE ALGORITHMS, 2011, 9 (03) : 231 - 240