Parameterized Complexity of Superstring Problems

被引:0
|
作者
Ivan Bliznets
Fedor V. Fomin
Petr A. Golovach
Nikolay Karpov
Alexander S. Kulikov
Saket Saurabh
机构
[1] St. Petersburg Department of Steklov Institute of Mathematics of the Russian Academy of Sciences,Department of Informatics
[2] University of Bergen,undefined
[3] Institute of Mathematical Sciences,undefined
来源
Algorithmica | 2017年 / 79卷
关键词
Shortest superstring; Parameterized complexity; Kernelization;
D O I
暂无
中图分类号
学科分类号
摘要
In the Shortest Superstring problem we are given a set of strings S={s1,…,sn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S=\{s_1, \ldots , s_n\}$$\end{document} and integer ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} and the question is to decide whether there is a superstring s of length at most ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} containing all strings of S as substrings. We obtain several parameterized algorithms and complexity results for this problem. In particular, we give an algorithm which in time 2O(k)poly(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\mathcal {O}(k)} {\text {poly}}(n)$$\end{document} finds a superstring of length at most ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} containing at least k strings of S. We complement this by a lower bound showing that such a parameterization does not admit a polynomial kernel up to some complexity assumption. We also obtain several results about “below guaranteed values” parameterization of the problem. We show that parameterization by compression admits a polynomial kernel while parameterization “below matching” is hard.
引用
收藏
页码:798 / 813
页数:15
相关论文
共 50 条
  • [11] Parameterized complexity of happy coloring problems
    Agrawal, Akanksha
    Aravind, N. R.
    Kalyanasundaram, Subrahmanyam
    Kare, Anjeneya Swami
    Lauri, Juho
    Misra, Neeldhara
    Reddy, I. Vinod
    THEORETICAL COMPUTER SCIENCE, 2020, 835 : 58 - 81
  • [12] Parameterized Complexity of Eulerian Deletion Problems
    Cygan, Marek
    Marx, Daniel
    Pilipczuk, Marcin
    Pilipczuk, Michal
    Schlotter, Ildiko
    ALGORITHMICA, 2014, 68 (01) : 41 - 61
  • [13] Parameterized Complexity of Directed Spanner Problems
    Fedor V. Fomin
    Petr A. Golovach
    William Lochet
    Pranabendu Misra
    Saket Saurabh
    Roohani Sharma
    Algorithmica, 2022, 84 : 2292 - 2308
  • [14] On miniaturized problems in parameterized complexity theory
    Chen, YJ
    Flum, J
    PARAMETERIZED AND EXACT COMPUTATION, PROCEEDINGS, 2004, 3162 : 108 - 120
  • [15] Parameterized Complexity of Eulerian Deletion Problems
    Marek Cygan
    Dániel Marx
    Marcin Pilipczuk
    Michał Pilipczuk
    Ildikó Schlotter
    Algorithmica, 2014, 68 : 41 - 61
  • [16] Parameterized complexity of constraint satisfaction problems
    Marx, D
    19TH IEEE ANNUAL CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 2004, : 139 - 149
  • [17] Parameterized Complexity of Secluded Connectivity Problems
    Fedor V. Fomin
    Petr A. Golovach
    Nikolay Karpov
    Alexander S. Kulikov
    Theory of Computing Systems, 2017, 61 : 795 - 819
  • [18] Incremental Problems in the Parameterized Complexity Setting
    Mans, Bernard
    Mathieson, Luke
    THEORY OF COMPUTING SYSTEMS, 2017, 60 (01) : 3 - 19
  • [19] The parameterized complexity of maximality and minimality problems
    Chen, Yijia
    Flum, Joerg
    PARAMETERIZED AND EXACT COMPUTATION, PROCEEDINGS, 2006, 4169 : 25 - 37
  • [20] PARAMETERIZED COMPLEXITY FOR GRAPH LAYOUT PROBLEMS
    Serna, Maria
    Thilikos, Dimitrios M.
    BULLETIN OF THE EUROPEAN ASSOCIATION FOR THEORETICAL COMPUTER SCIENCE, 2005, (86): : 41 - 65