Parameterized Complexity of Superstring Problems

被引:0
|
作者
Ivan Bliznets
Fedor V. Fomin
Petr A. Golovach
Nikolay Karpov
Alexander S. Kulikov
Saket Saurabh
机构
[1] St. Petersburg Department of Steklov Institute of Mathematics of the Russian Academy of Sciences,Department of Informatics
[2] University of Bergen,undefined
[3] Institute of Mathematical Sciences,undefined
来源
Algorithmica | 2017年 / 79卷
关键词
Shortest superstring; Parameterized complexity; Kernelization;
D O I
暂无
中图分类号
学科分类号
摘要
In the Shortest Superstring problem we are given a set of strings S={s1,…,sn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S=\{s_1, \ldots , s_n\}$$\end{document} and integer ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} and the question is to decide whether there is a superstring s of length at most ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} containing all strings of S as substrings. We obtain several parameterized algorithms and complexity results for this problem. In particular, we give an algorithm which in time 2O(k)poly(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\mathcal {O}(k)} {\text {poly}}(n)$$\end{document} finds a superstring of length at most ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} containing at least k strings of S. We complement this by a lower bound showing that such a parameterization does not admit a polynomial kernel up to some complexity assumption. We also obtain several results about “below guaranteed values” parameterization of the problem. We show that parameterization by compression admits a polynomial kernel while parameterization “below matching” is hard.
引用
收藏
页码:798 / 813
页数:15
相关论文
共 50 条
  • [1] Parameterized Complexity of Superstring Problems
    Bliznets, Ivan
    Fomin, Fedor V.
    Golovach, Petr A.
    Karpov, Nikolay
    Kulikov, Alexander S.
    Saurabh, Saket
    ALGORITHMICA, 2017, 79 (03) : 798 - 813
  • [2] The parameterized complexity of counting problems
    Flum, J
    Grohe, M
    FOCS 2002: 43RD ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2002, : 538 - 547
  • [3] Counting Problems in Parameterized Complexity
    Zhang, Chihao
    Chen, Yijia
    TSINGHUA SCIENCE AND TECHNOLOGY, 2014, 19 (04) : 410 - 420
  • [4] Counting Problems in Parameterized Complexity
    Chihao Zhang
    Yijia Chen
    TsinghuaScienceandTechnology, 2014, 19 (04) : 410 - 420
  • [5] On the Parameterized Complexity of Reconfiguration Problems
    Mouawad, Amer E.
    Nishimura, Naomi
    Raman, Venkatesh
    Simjour, Narges
    Suzuki, Akira
    ALGORITHMICA, 2017, 78 (01) : 274 - 297
  • [6] The parameterized complexity of counting problems
    Flum, J
    Grohe, M
    SIAM JOURNAL ON COMPUTING, 2004, 33 (04) : 892 - 922
  • [7] Parameterized complexity of geometric problems
    Giannopoulos, Panos
    Knauer, Christian
    Whitesides, Sue
    COMPUTER JOURNAL, 2008, 51 (03): : 372 - 384
  • [8] On the Parameterized Complexity of Reconfiguration Problems
    Amer E. Mouawad
    Naomi Nishimura
    Venkatesh Raman
    Narges Simjour
    Akira Suzuki
    Algorithmica, 2017, 78 : 274 - 297
  • [9] On the parameterized complexity of dynamic problems
    Abu-Khzam, Faisal N.
    Egan, Judith
    Fellows, Michael R.
    Rosamond, Frances A.
    Shaw, Peter
    THEORETICAL COMPUTER SCIENCE, 2015, 607 : 426 - 434
  • [10] On the parameterized complexity of exact satisfiability problems
    Kneis, J
    Mölle, D
    Richter, S
    Rossmanith, P
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2005, PROCEEDINGS, 2005, 3618 : 568 - 579