A Novel Approach Based on Marine Predators Algorithm for Medical Image Enhancement

被引:0
作者
Phu-Hung Dinh
机构
[1] Thuyloi University,Faculty of Computer Science and Engineering
来源
Sensing and Imaging | / 24卷
关键词
Image enhancement; Contrast limited adaptive histogram equalization; Laplace edge detection; Marine predators algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
One of the approaches to improve the performance of image processing applications is to enhance the input image quality. Some common problems with medical images include lack of sharpness, noise, or low contrast. In this study, we propose a new algorithm to improve the quality of brain Magnetic resonance images (MRI). Firstly, we use image enhancement algorithms such as Contrast limited adaptive histogram equalization (CLAHE), Denoise based on convolutional neural network (DN-CNN), and Laplacian edge detection (LED) to create I1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{1}$$\end{document}, I2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{2}$$\end{document}, and I3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{3}$$\end{document} images from the input image (I), respectively. Secondly, the Marine predators algorithm (MPA) is used to find the adaptive parameters β1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _{1}$$\end{document}, β2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _{2}$$\end{document}, and β3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _{3}$$\end{document} corresponding to I1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{1}$$\end{document}, I2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{2}$$\end{document}, and I3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{3}$$\end{document}. Finally, the enhanced image is made up of the sum of the I1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{1}$$\end{document}, I2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{2}$$\end{document}, and I3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{3}$$\end{document} images multiplied by the coefficients β1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _{1}$$\end{document}, β2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _{2}$$\end{document}, and β3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _{3}$$\end{document}, respectively. Experiments show that the images produced by our model are better than those produced by some recent image enhancement methods. Furthermore, our model also allows for improving the performance of image fusion algorithms.
引用
收藏
相关论文
共 157 条
[1]  
Abualigah L(2022)Boosting marine predators algorithm by salp swarm algorithm for multilevel thresholding image segmentation Multimedia Tools and Applications 81 16707-16742
[2]  
Al-Okbi NK(2020)Particle swarm optimized texture based histogram equalization (Psothe) for MRI brain image enhancement Optik 224 6807-6815
[3]  
Elaziz MA(2020)Salp swarm algorithm-based optimally weighted histogram framework for image enhancement IEEE Transactions on Instrumentation and Measurement 69 574-4385
[4]  
Houssein EH(2019)Fractional-order fusion model for low-light image enhancement Symmetry 11 4367-1021
[5]  
Acharya UK(2021)Combining gabor energy with equilibrium optimizer algorithm for multi-modality medical image fusion Biomedical Signal Processing and Control 68 1001-657
[6]  
Kumar S(2021)An improved medical image synthesis approach based on marine predators algorithm and maximum gabor energy Neural Computing and Applications 34 104343-315
[7]  
Bhandari AK(2021)Multi-modal medical image fusion based on equilibrium optimizer algorithm and local energy functions Applied Intelligence 171 637-35032
[8]  
Kandhway P(2021)A novel approach based on grasshopper optimization algorithm for medical image fusion Expert Systems with Applications 67 313-8106
[9]  
Maurya S(2021)A novel approach based on three-scale image decomposition and marine predators algorithm for multi-modal medical image fusion Biomedical Signal Processing and Control 33 35017-2689
[10]  
Dai Q(2022)A novel approach using structure tensor for medical image fusion Multidimensional Systems and Signal Processing 80 8093-15159