SumStatsRehab: an efficient algorithm for GWAS summary statistics assessment and restoration

被引:0
作者
Mykyta Matushyn
Madhuchanda Bose
Abdallah Amr Mahmoud
Lewis Cuthbertson
Carlos Tello
Karatuğ Ozan Bircan
Andrew Terpolovsky
Varuna Bamunusinghe
Umar Khan
Biljana Novković
Manfred G. Grabherr
Puya G. Yazdi
机构
[1] SelfDecode.Com,
来源
BMC Bioinformatics | / 23卷
关键词
Bioinformatics; GWAS; Summary statistics; PRS; Genetics;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 29 条
  • [1] Chatterjee N(2016)Developing and evaluating polygenic risk prediction models for stratified disease prevention Nat Rev Genet 17 392-406
  • [2] Shi J(2008)Genome-wide association studies for complex traits: consensus, uncertainty and challenges Nat Rev Genet 9 356-369
  • [3] García-Closas M(2018)Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations Nat Genet 50 1219-1224
  • [4] McCarthy MI(2021)PUMAS: fine-tuning polygenic risk scores with GWAS summary statistics Genome Biol 22 257-4596
  • [5] Khera AV(2020)Is useful research data usually shared? An investigation of genome-wide association study summary statistics PLoS ONE 15 e0229578-487
  • [6] Zhao Z(2021)The variant call format provides efficient and robust storage of GWAS summary statistics Genome Biol 22 32-1757
  • [7] Thelwall M(2021)MungeSumstats: a Bioconductor package for the standardization and quality control of many GWAS summary statistics Bioinformatics 37 4593-2772
  • [8] Lyon MS(2018)Proper conditional analysis in the presence of missing data: Application to large scale meta-analysis of tobacco use phenotypes PLOS Genet 14 481-21
  • [9] Murphy AE(2016)Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets Nat Genet 48 514-306
  • [10] Schilder BM(2019)Genetic analyses of diverse populations improves discovery for complex traits Nature 570 1752-2055