Identifying the presence and severity of dementia by applying interpretable machine learning techniques on structured clinical records

被引:0
|
作者
Akhilesh Vyas
Fotis Aisopos
Maria-Esther Vidal
Peter Garrard
Georgios Paliouras
机构
[1] Leibniz University Hannover,L3S Research Center
[2] TIB-Leibniz Information Centre for Science and Technology,Scientific Data Management research group
[3] Institute of Informatics and Telecommunications,Software and Knowledge Engineering Laboratory
[4] NCSR “Demokritos”,Molecular and Clinical Science Research Institute
[5] St George’s,undefined
[6] University of London,undefined
来源
BMC Medical Informatics and Decision Making | / 22卷
关键词
Dementia; Mini mental score; Machine learning; Data science; LIME; CAMCOG;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Identifying key factors in cell fate decisions by machine learning interpretable strategies
    Xinyu He
    Ruoyu Tang
    Jie Lou
    Ruiqi Wang
    Journal of Biological Physics, 2023, 49 : 443 - 462
  • [32] Simple models for estimating dementia severity using Machine Learning
    Shankle, WR
    Mania, S
    Dick, MB
    Pazzani, MJ
    MEDINFO '98 - 9TH WORLD CONGRESS ON MEDICAL INFORMATICS, PTS 1 AND 2, 1998, 52 : 472 - 476
  • [33] Identifying machine learning techniques for classification of target advertising
    Choi, Jin-A
    Lim, Kiho
    ICT EXPRESS, 2020, 6 (03): : 175 - 180
  • [34] Identifying Blood Biomarkers for Dementia Using Machine Learning Methods in the Framingham Heart Study
    Lin, Honghuang
    Himali, Jayandra J.
    Satizabal, Claudia L.
    Beiser, Alexa S.
    Levy, Daniel
    Benjamin, Emelia J.
    Gonzales, Mitzi M.
    Ghosh, Saptaparni
    Vasan, Ramachandran S.
    Seshadri, Sudha
    McGrath, Emer R.
    CELLS, 2022, 11 (09)
  • [35] Prognosis of dementia employing machine learning and microsimulation techniques: a systematic literature review
    Dallora, Ana Luiza
    Eivazzadeh, Shahryar
    Mendes, Emilia
    Berglund, Johan
    Anderberg, Peter
    INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS/INTERNATIONAL CONFERENCE ON PROJECT MANAGEMENT/INTERNATIONAL CONFERENCE ON HEALTH AND SOCIAL CARE INFORMATION SYSTEMS AND TECHNOLOGIES, CENTERIS/PROJMAN / HCIST 2016, 2016, 100 : 480 - 488
  • [36] Detection of pulmonary embolism severity using clinical characteristics, hematological indices, and machine learning techniques
    Su, Hang
    Han, Zhengyuan
    Fu, Yujie
    Zhao, Dong
    Yu, Fanhua
    Heidari, Ali Asghar
    Zhang, Yu
    Shou, Yeqi
    Wu, Peiliang
    Chen, Huiling
    Chen, Yanfan
    FRONTIERS IN NEUROINFORMATICS, 2022, 16
  • [37] Comprehensive Analysis of Students' Performance by Applying Machine Learning Techniques
    HemaMalini, B. H.
    Suresh, L.
    Kushal, Mayank
    SMART INTELLIGENT COMPUTING AND APPLICATIONS, VOL 2, 2020, 160 : 547 - 556
  • [38] Development of an Interpretable Maritime Accident Prediction System Using Machine Learning Techniques
    Kim, Gyeongho
    Lim, Sunghoon
    IEEE ACCESS, 2022, 10 : 41313 - 41329
  • [39] Predicting diabetic retinopathy and identifying interpretable biomedical features using machine learning algorithms
    Hsin-Yi Tsao
    Pei-Ying Chan
    Emily Chia-Yu Su
    BMC Bioinformatics, 19
  • [40] Predicting diabetic retinopathy and identifying interpretable biomedical features using machine learning algorithms
    Tsao, Hsin-Yi
    Chan, Pei-Ying
    Su, Emily Chia-Yu
    BMC BIOINFORMATICS, 2018, 19