A general class of free boundary problems for fully nonlinear parabolic equations

被引:0
作者
Alessio Figalli
Henrik Shahgholian
机构
[1] The University of Texas at Austin,Mathematics Department
[2] KTH Royal Institute of Technology,Department of Mathematics
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2015年 / 194卷
关键词
Free boundaries; Regularity; Parabolic fully nonlinear; 35R35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the fully nonlinear parabolic free boundary problem F(D2u)-∂tu=1a.e. inQ1∩Ω|D2u|+|∂tu|≤Ka.e. inQ1\Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} F(D^2u) -\partial _{t} u=1 &{} \text {a.e. in }Q_1 \cap \Omega \\ |D^2 u| + |\partial _{t} u| \le K &{} \text {a.e. in }Q_1{\setminus }\Omega , \end{array} \right. \end{aligned}$$\end{document}where K>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K>0$$\end{document} is a positive constant, and Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is an (unknown) open set. Our main result is the optimal regularity for solutions to this problem: namely, we prove that Wx2,n∩Wt1,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_x^{2,n} \cap W_t^{1,n} $$\end{document} solutions are locally Cx1,1∩Ct0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_x^{1,1}\cap C_t^{0,1} $$\end{document} inside Q1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_1$$\end{document}. A key starting point for this result is a new BMO-type estimate, which extends to the parabolic setting the main result in Caffarelli and Huang (Duke Math J 118(1):1–17, 2003). Once optimal regularity for u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u$$\end{document} is obtained, we also show regularity for the free boundary ∂Ω∩Q1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega \cap Q_1$$\end{document} under the extra condition that Ω⊃{u≠0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \supset \{ u \ne 0 \}$$\end{document}, and a uniform thickness assumption on the coincidence set {u=0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ u = 0 \}$$\end{document}.
引用
收藏
页码:1123 / 1134
页数:11
相关论文
共 21 条
[1]  
Andersson J(2013)Optimal regularity for the no-sign obstacle problem Commun. Pure Appl. Math. 66 245-262
[2]  
Lindgren E(2013)Optimal regularity for the parabolic no-sign obstacle type problem Interfaces Free Bound. 15 477-499
[3]  
Shahgholian H(1989)Interior a priori estimates for solutions of fully nonlinear equations Ann. Math. (2) 130 189-213
[4]  
Andersson J.(2003)Estimates in the generalized Campanato–John–Nirenberg spaces for fully nonlinear elliptic equations Duke Math. J. 118 1-17
[5]  
Lindgren E.(2000)Regularity of a free boundary with application to the Pompeiu problem Ann. Math. (2) 151 269-292
[6]  
Shahgholian H.(2004)Regularity of a free boundary in parabolic potential theory J. Am. Math. Soc. 17 827-869
[7]  
Caffarelli LA(2000)-theory for fully nonlinear uniformly parabolic equations Commun. Partial Differ. Eq. 25 1997-2053
[8]  
Caffarelli LA(1982)Boundedly inhomogeneous elliptic and parabolic equations Izv. Akad. Nauk SSSR Ser. Mat. 46 487-523
[9]  
Huang Q(1992)On the regularity theory of fully nonlinear parabolic equations. I Commun. Pure Appl. Math. 45 27-76
[10]  
Caffarelli LA(1992)On the regularity theory of fully nonlinear parabolic equations. II Commun. Pure Appl. Math. 45 141-178