Some classes of the MDS matrices over a finite field

被引:2
作者
Belov A.V. [1 ]
Los A.B. [1 ]
Rozhkov M.I. [1 ]
机构
[1] National Research University Higher School of Economics, Moscow
关键词
MDS code; MDS matrix;
D O I
10.1134/S1995080217050067
中图分类号
学科分类号
摘要
The paper is presented some classes of MDS matrices of size 4 × 4 with the maximum number of units and minimal number of non unit elements. This class of matrices is widely used as diffuse maps when building block type algorithms and hash functions that provide protection against certain methods of analysis. © 2017, Pleiades Publishing, Ltd.
引用
收藏
页码:880 / 883
页数:3
相关论文
共 9 条
[1]  
Junod P., Vaudenay S., Perfect diffusion primitives for block ciphers building efficient MDS matrices, Lect. Notes Comput. Sci., 3357, pp. 84-99, (2004)
[2]  
Augot D., Finiasz M., Exhaustive search for small dimension recursive MDS diffusion layers for block ciphers and hash functions, Proceedings of the IEEE International Symposiumon Information Theory, pp. 1551-1555, (2013)
[3]  
Gupta K.C., Ray I.G., On constructions of MDS matrices from companion matrices for lightweight cryptography, Lect. Notes Comput. Sci., 8128, pp. 29-43, (2013)
[4]  
Murtaza G., Ikram N., New methods of generating MDS matrices, Proceedings of International Cryptology Workshop and Conference, (2008)
[5]  
Markov V., Nechaev A., Generalized BCH-theorem and linear recursive MDS-codes, Proceedings of 12th International Workshop on Algebraic and Combinatorial Coding Theory, (2010)
[6]  
Couselo E., Gonsales S., Markov V., Nechaev A., Recursive MDS-codes and recursively differentiable quasigroup, Discret.Mat., 10, 2, pp. 3-29, (1988)
[7]  
Couselo E., Gonsales S., Markov V., Nechaev A., The parameters of recursive MDS-codes, Discret. Mat., 12, 4, pp. 3-24, (2000)
[8]  
Lidl R., Niederreiter H., Introduction to Finite Fields ant their Applications, (1994)
[9]  
Berlekamp E., Algebraic Coding Theory, (1968)