An update on the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^q$$\end{document} norms of spectral multipliers on unimodular Lie groups

被引:0
作者
David Rottensteiner
Michael Ruzhansky
机构
[1] Ghent University,Department of Mathematics: Analysis, Logic and Discrete Mathematics
[2] Queen Mary University of London,School of Mathematical Sciences
关键词
Spectral multiplier; Lie group; Unimodular; Sub-Laplacian; Rockland operator.; Primary 35Pxx; Secondary 22E30.;
D O I
10.1007/s00013-023-01838-1
中图分类号
学科分类号
摘要
This note gives a wide-ranging update on the multiplier theorems by Akylzhanov and the second author [J. Funct. Anal., 278 (2020), 108324]. The proofs of the latter crucially rely on Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^q$$\end{document} norm estimates for spectral projectors of left-invariant weighted subcoercive operators on unimodular Lie groups, such as Laplacians, sub-Laplacians, and Rockland operators. By relating spectral projectors to heat kernels, explicit estimates of the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^q$$\end{document} norms can be immediately exploited for a much wider range of (connected unimodular) Lie groups and operators than previously known. The comparison with previously established bounds by the authors show that the heat kernel estimates are sharp. As an application, it is shown that several consequences of the multiplier theorems, such as time asymptotics for the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^q$$\end{document} norms of the heat kernels and Sobolev-type embeddings, are then automatic for the considered operators.
引用
收藏
页码:507 / 520
页数:13
相关论文
共 18 条
[1]  
Agrachev A(2009)The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups J. Funct. Anal. 256 2621-2655
[2]  
Boscain U(1994)On positive Rockland operators Colloq. Math. 67 197-216
[3]  
Gauthier J-P(1991) bounds for spectral multipliers on nilpotent groups Trans. Amer. Math. Soc. 328 73-81
[4]  
Rossi F(2019)The Hausdorff-Young inequality on Lie groups Math. Ann. 375 93-131
[5]  
Auscher P(1976)The distribution of energy in the Brownian motion in the Gaussian field and analytic-hypoellipticity of certain subelliptic operators on the Heisenberg group Studia Math. 56 165-173
[6]  
ter Elst AFM(2011)Spectral theory for commutative algebras of differential operators on Lie groups J. Funct. Anal. 260 2767-2814
[7]  
Robinson DW(1994)Weighted strongly elliptic operators on Lie groups J. Funct. Anal. 125 548-603
[8]  
Christ M(1998)Weighted subcoercive operators on Lie groups J. Funct. Anal. 157 88-163
[9]  
Cowling MG(undefined)undefined undefined undefined undefined-undefined
[10]  
Martini A(undefined)undefined undefined undefined undefined-undefined