Hidden symmetry of the static response of black holes: applications to Love numbers

被引:0
作者
Jibril Ben Achour
Etera R. Livine
Shinji Mukohyama
Jean-Philippe Uzan
机构
[1] Arnold Sommerfeld Center for Theoretical Physics,Center for Gravitational Physics
[2] Ecole Normale Supérieure de Lyon,Kavli Institute for the Physics and Mathematics of the Universe (WPI)
[3] Yukawa Institute for Theoretical Physics,undefined
[4] The University of Tokyo,undefined
[5] Institut d’Astrophysique de Paris,undefined
[6] CNRS UMR 7095,undefined
[7] Sorbonne Universités,undefined
来源
Journal of High Energy Physics | / 2022卷
关键词
Global Symmetries; Black Holes; Classical Theories of Gravity;
D O I
暂无
中图分类号
学科分类号
摘要
We show that any static linear perturbations around Schwarzschild black holes enjoy a set of conserved charges which forms a centrally extended Schrödinger algebra sh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{sh} $$\end{document}(1) = sl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{sl} $$\end{document}(2, ℝ) ⋉ H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{H} $$\end{document}. The central charge is given by the black hole mass, echoing results on black hole entropy from near-horizon diffeomorphism symmetry. The finite symmetry transformations generated by these conserved charges correspond to Galilean and conformal transformations of the static field and of the coordinates. This new structure allows one to discuss the static response of a Schwarzschild black hole in the test field approximation from a symmetry-based approach. First we show that the (horizontal) symmetry protecting the vanishing of the Love numbers recently exhibited by Hui et al., dubbed the HJPSS symmetry, coincides with one of the sl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{sl} $$\end{document}(2, ℝ) generators of the Schrödinger group. Then, it is demonstrated that the HJPSS symmetry is selected thanks to the spontaneous breaking of the full Schrödinger symmetry at the horizon down to a simple abelian sub-group. The latter can be understood as the symmetry protecting the regularity of the test field at the horizon. In the 4-dimensional case, this provides a symmetry protection for the vanishing of the Schwarzschild Love numbers. Our results trivially extend to the Kerr case.
引用
收藏
相关论文
共 65 条
[1]  
Banerjee P(2021)undefined Astrophys. J. 910 23-undefined
[2]  
Garain D(2020)undefined JCAP 08 029-undefined
[3]  
Paul S(2021)undefined JHEP 05 038-undefined
[4]  
Rajibul S(2021)undefined JCAP 04 052-undefined
[5]  
Sarkar T(2016)undefined Fortsch. Phys. 64 723-undefined
[6]  
Herdeiro CAR(2020)undefined JHEP 11 106-undefined
[7]  
Panotopoulos G(2012)undefined JHEP 02 010-undefined
[8]  
Radu E(2017)undefined J. Math. Anal. Appl. 451 976-undefined
[9]  
Charalambous P(2018)undefined Eur. Phys. J. C 78 314-undefined
[10]  
Dubovsky S(2016)undefined Annals Phys. 373 631-undefined