TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document} flow as characteristic flows

被引:0
作者
Jue Hou
机构
[1] Southeast University,School of Physics
[2] Southeast University,Shing
关键词
Field Theories in Lower Dimensions; Integrable Field Theories;
D O I
10.1007/JHEP03(2023)243
中图分类号
学科分类号
摘要
We show that method of characteristics provides a powerful new point of view on TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document}-and related deformations. Previously, the method of characteristics has been applied to TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document}-deformation mainly to solve Burgers’ equation, which governs the deformation of the quantum spectrum. In the current work, we study classical deformed quantities using this method and show that TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document} flow can be seen as a characteristic flow. Exploiting this point of view, we re-derive a number of important known results and obtain interesting new ones. We prove the equivalence between dynamical change of coordinates and the generalized light-cone gauge approaches to TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document}-deformation. We find the deformed Lagrangians for a class of TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document}-like deformations in higher dimensions and the (TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document})α-deformation in 2d with generic α, generalizing recent results in [1] and [2].
引用
收藏
相关论文
共 28 条
[1]  
Smirnov FA(2017)undefined Nucl. Phys. B 915 363-undefined
[2]  
Zamolodchikov AB(2019)undefined JHEP 03 004-undefined
[3]  
Hartman T(2021)undefined JHEP 02 121-undefined
[4]  
Kruthoff J(2012)undefined JHEP 09 133-undefined
[5]  
Shaghoulian E(2013)undefined JHEP 09 045-undefined
[6]  
Tajdini A(2021)undefined JHEP 12 119-undefined
[7]  
Khoeini-Moghaddam S(2022)undefined SciPost Phys. 13 012-undefined
[8]  
Omidi F(2021)undefined JHEP 03 022-undefined
[9]  
Paul C(2022)undefined JHEP 09 251-undefined
[10]  
Dubovsky S(undefined)undefined undefined undefined undefined-undefined