We propose generalised N\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mathcal{N} $$\end{document} = 1 superconformal higher-spin (SCHS) gauge multiplets of depth t, ϒαnα⋅mt\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\Upsilon}_{\alpha (n)\overset{\cdot }{\alpha }(m)}^{(t)} $$\end{document}, with n ≥ m ≥ 1. At the component level, for t > 2 they contain generalised conformal higher-spin (CHS) gauge fields with depths t − 1, t and t + 1. The supermultiplets with t = 1 and t = 2 include both ordinary and generalised CHS gauge fields. Super-Weyl and gauge invariant actions describing the dynamics of ϒαnα⋅mt\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\Upsilon}_{\alpha (n)\overset{\cdot }{\alpha }(m)}^{(t)} $$\end{document} on conformally-flat superspace backgrounds are then derived. For the case n = m = t = 1, corresponding to the maximal-depth conformal graviton supermultiplet, we extend this action to Bach-flat backgrounds. Models for superconformal non-gauge multiplets, which are expected to play an important role in the Bach-flat completions of the models for ϒαnα⋅mt\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\Upsilon}_{\alpha (n)\overset{\cdot }{\alpha }(m)}^{(t)} $$\end{document}, are also provided. Finally we show that, on Bach-flat backgrounds, requiring gauge and Weyl invariance does not always determine a model for a CHS field uniquely.