Generalised superconformal higher-spin multiplets

被引:0
|
作者
Sergei M. Kuzenko
Michael Ponds
Emmanouil S. N. Raptakis
机构
[1] The University of Western Australia,Department of Physics M013
来源
Journal of High Energy Physics | / 2021卷
关键词
Higher Spin Symmetry; Supergravity Models; Superspaces;
D O I
暂无
中图分类号
学科分类号
摘要
We propose generalised N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 superconformal higher-spin (SCHS) gauge multiplets of depth t, ϒαnα⋅mt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\Upsilon}_{\alpha (n)\overset{\cdot }{\alpha }(m)}^{(t)} $$\end{document}, with n ≥ m ≥ 1. At the component level, for t > 2 they contain generalised conformal higher-spin (CHS) gauge fields with depths t − 1, t and t + 1. The supermultiplets with t = 1 and t = 2 include both ordinary and generalised CHS gauge fields. Super-Weyl and gauge invariant actions describing the dynamics of ϒαnα⋅mt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\Upsilon}_{\alpha (n)\overset{\cdot }{\alpha }(m)}^{(t)} $$\end{document} on conformally-flat superspace backgrounds are then derived. For the case n = m = t = 1, corresponding to the maximal-depth conformal graviton supermultiplet, we extend this action to Bach-flat backgrounds. Models for superconformal non-gauge multiplets, which are expected to play an important role in the Bach-flat completions of the models for ϒαnα⋅mt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\Upsilon}_{\alpha (n)\overset{\cdot }{\alpha }(m)}^{(t)} $$\end{document}, are also provided. Finally we show that, on Bach-flat backgrounds, requiring gauge and Weyl invariance does not always determine a model for a CHS field uniquely.
引用
收藏
相关论文
共 50 条