Multi-Modal 3D Object Detection in Autonomous Driving: A Survey

被引:0
作者
Yingjie Wang
Qiuyu Mao
Hanqi Zhu
Jiajun Deng
Yu Zhang
Jianmin Ji
Houqiang Li
Yanyong Zhang
机构
[1] University of Science and Technology of China,
来源
International Journal of Computer Vision | 2023年 / 131卷
关键词
3D object detection; Multi-modal fusion; Sensor fusion; Autonomous driving;
D O I
暂无
中图分类号
学科分类号
摘要
The past decade has witnessed the rapid development of autonomous driving systems. However, it remains a daunting task to achieve full autonomy, especially when it comes to understanding the ever-changing, complex driving scenes. To alleviate the difficulty of perception, self-driving vehicles are usually equipped with a suite of sensors (e.g., cameras, LiDARs), hoping to capture the scenes with overlapping perspectives to minimize blind spots. Fusing these data streams and exploiting their complementary properties is thus rapidly becoming the current trend. Nonetheless, combining data that are captured by different sensors with drastically different ranging/ima-ging mechanisms is not a trivial task; instead, many factors need to be considered and optimized. If not careful, data from one sensor may act as noises to data from another sensor, with even poorer results by fusing them. Thus far, there has been no in-depth guidelines to designing the multi-modal fusion based 3D perception algorithms. To fill in the void and motivate further investigation, this survey conducts a thorough study of tens of recent deep learning based multi-modal 3D detection networks (with a special emphasis on LiDAR-camera fusion), focusing on their fusion stage (i.e., when to fuse), fusion inputs (i.e., what to fuse), and fusion granularity (i.e., how to fuse). These important design choices play a critical role in determining the performance of the fusion algorithm. In this survey, we first introduce the background of popular sensors used for self-driving, their data properties, and the corresponding object detection algorithms. Next, we discuss existing datasets that can be used for evaluating multi-modal 3D object detection algorithms. Then we present a review of multi-modal fusion based 3D detection networks, taking a close look at their fusion stage, fusion input and fusion granularity, and how these design choices evolve with time and technology. After the review, we discuss open challenges as well as possible solutions. We hope that this survey can help researchers to get familiar with the field and embark on investigations in the area of multi-modal 3D object detection.
引用
收藏
页码:2122 / 2152
页数:30
相关论文
共 50 条
  • [21] Survey on deep learning-based 3D object detection in autonomous driving
    Liang, Zhenming
    Huang, Yingping
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2023, 45 (04) : 761 - 776
  • [22] Multi-Modal Fusion Based on Depth Adaptive Mechanism for 3D Object Detection
    Liu, Zhanwen
    Cheng, Juanru
    Fan, Jin
    Lin, Shan
    Wang, Yang
    Zhao, Xiangmo
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 707 - 717
  • [23] Height-Adaptive Deformable Multi-Modal Fusion for 3D Object Detection
    Li, Jiahao
    Chen, Lingshan
    Li, Zhen
    IEEE ACCESS, 2025, 13 : 52385 - 52396
  • [24] 3D object detection algorithms in autonomous driving: A review
    Ren K.-Y.
    Gu M.-Y.
    Yuan Z.-Q.
    Yuan S.
    Kongzhi yu Juece/Control and Decision, 2023, 38 (04): : 865 - 889
  • [25] UniM2 AE: Multi-modal Masked Autoencoders with Unified 3D Representation for 3D Perception in Autonomous Driving
    Zou, Jian
    Huang, Tianyu
    Yang, Guanglei
    Guo, Zhenhua
    Luo, Tao
    Feng, Chun-Mei
    Zuo, Wangmeng
    COMPUTER VISION-ECCV 2024, PT XXII, 2025, 15080 : 296 - 313
  • [26] Towards efficient multi-modal 3D object detection: Homogeneous sparse fuse network
    Tang, Yingjuan
    He, Hongwen
    Wang, Yong
    Wu, Jingda
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 256
  • [27] GraphBEV: Towards Robust BEV Feature Alignment for Multi-modal 3D Object Detection
    Song, Ziying
    Yang, Lei
    Xu, Shaoqing
    Liu, Lin
    Xu, Dongyang
    Jia, Caiyan
    Jia, Feiyang
    Wang, Li
    COMPUTER VISION - ECCV 2024, PT XXVI, 2025, 15084 : 347 - 366
  • [28] Multi-Sensor Fusion Technology for 3D Object Detection in Autonomous Driving: A Review
    Wang, Xuan
    Li, Kaiqiang
    Chehri, Abdellah
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (02) : 1148 - 1165
  • [29] A Review of 3D Object Detection for Autonomous Driving of Electric Vehicles
    Dai, Deyun
    Chen, Zonghai
    Bao, Peng
    Wang, Jikai
    WORLD ELECTRIC VEHICLE JOURNAL, 2021, 12 (03)
  • [30] LiDAR-based 3D Object Detection for Autonomous Driving
    Li, Zirui
    2022 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, COMPUTER VISION AND MACHINE LEARNING (ICICML), 2022, : 507 - 512