Shape-Preserving Polynomial Interpolation Scheme

被引:0
作者
M. Hussain
M. Z. Hussain
M. Sarfraz
机构
[1] Lahore College for Women University,Department of Mathematics
[2] University of the Punjab,Department of Mathematics
[3] Kuwait University,Department of Information Sciences
来源
Iranian Journal of Science and Technology, Transactions A: Science | 2016年 / 40卷
关键词
cubic function; Ball form; Peano Kernel theorem; Shape preservation;
D O I
暂无
中图分类号
学科分类号
摘要
The cubic polynomial interpolation schemes are presented for the shape preservation of positive, monotone and convex 2D data. A GC1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \text{GC}^{1} $$\end{document} cubic interpolant with two free parameters in Ball form is constructed. The constraints are developed on these free parameters to preserve the shapes of data. The order of approximation of the developed shape-preserving schemes is Ohi2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ O\left( {h_{i}^{2} } \right) $$\end{document}.
引用
收藏
页码:9 / 18
页数:9
相关论文
共 29 条
  • [1] Butt S(1993)Preserving positivity using piecewise cubic interpolation Comput Graph 17 55-64
  • [2] Brodlie KW(2003)Constrained control and approximation properties of rational interpolating curve Inf Sci 152 181-194
  • [3] Duan Q(1984)A method for constructing local monotone piecewise cubic interpolants SIAM J Sci Comput 5 303-304
  • [4] Djidjeli K(1980)Monotone piecewise cubic interpolation SIAM J Numer Anal 17 238-246
  • [5] Price WG(2008)Convexity-preserving piecewise rational quartic interpolation SIAM J Numer Anal 46 920-929
  • [6] Twizell EH(2007)Visualization of data preserving monotonicity Appl Math Comput 190 1353-1354
  • [7] Fritsch FN(2008)Positivity-preserving interpolation of positive data by rational cubics J Comput Appl Math 218 446-458
  • [8] Butland J(2013)Monotone and convex interpolation by weighted cubic splines Comput Math Math Phys 53 1428-1439
  • [9] Fritsch FN(1990)Shape preserving interpolation by quadratic splines J Comput Appl Math 29 15-24
  • [10] Carlson RE(2001)Shape-preserving Numer Algor 28 229-254