Homological models for semidirect products of finitely generated Abelian groups

被引:0
作者
Víctor Álvarez
José Andrés Armario
María Dolores Frau
Pedro Real
机构
[1] Universidad de Sevilla,Departamento de matemática Aplicada I. ETSI Informática
来源
Applicable Algebra in Engineering, Communication and Computing | 2012年 / 23卷
关键词
Semidirect product of groups; Homological model; Contraction; Homological perturbation theory; 20J05; 20J06; 20J05; 20J06;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a semidirect product of finitely generated Abelian groups. We provide a method for constructing an explicit contraction (special homotopy equivalence) from the reduced bar construction of the group ring of G, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{B}(\mathsf{\textstyle Z\kern-0.4em Z}[G])}$$\end{document} , to a much smaller DGA-module hG. Such a contraction is called a homological model for G and is used as the input datum in the methods described in Álvarez et al. (J Symb Comput 44:558–570, 2009; 2012) for calculating a generating set for representative 2-cocycles and n-cocycles over G, respectively. These computations have led to the finding of new cocyclic Hadamard matrices (Álvarez et al. in 2006).
引用
收藏
页码:101 / 127
页数:26
相关论文
共 36 条
[1]  
Álvarez V.(2009)The homological reduction method for computing cocyclic matrices J. Symb. Comput. 44 558-570
[2]  
Armario J.A.(1993)Free resolutions for semi-direct products Tohoku Math. J. 45 535-537
[3]  
Frau M.D.(1998)Homology of iterated semidirect products of free groups J. Pure Appl. Algebra 126 87-120
[4]  
Real P.(1993)A weak difference set construction for higher-dimensional designs Des. Codes Cryptogr. 3 75-87
[5]  
Brady T.(1993)Cocyclic development of designs J. Algebraic Combin. 2 267-290
[6]  
Cohen D.C.(1953)On the groups Ann. Math. 58 55-106
[7]  
Suciu A.I.(1954)( Ann. Math. 66 49-139
[8]  
de Launey W.(1953), Am. J. Math. 75 200-204
[9]  
Horadam K.J.(1996)) I J. Pure Appl. Algebra 112 181-190
[10]  
Launey W.(1972)On the groups Illinois J. Math. 3 398-414