Some extensions for Ramanujan’s circular summation formulas and applications

被引:0
|
作者
Ji-Ke Ge
Qiu-Ming Luo
机构
[1] Chongqing University of Science and Technology,School of Intelligent Technology and Engineering
[2] Chongqing Higher Education Mega Center,Department of Mathematics
[3] Chongqing Normal University,undefined
[4] Chongqing Higher Education Mega Center,undefined
来源
The Ramanujan Journal | 2021年 / 56卷
关键词
Elliptic functions; Jacobi’s theta functions; Ramanujan’s circular summation; Identities of Jacobi’s theta functions; 11F27; 11F20; 33E05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we give some extensions for Ramanujan’s circular summation formulas with the mixed products of two Jacobi’s theta functions. As applications, we also obtain many interesting identities of Jacobi’s theta functions.
引用
收藏
页码:491 / 518
页数:27
相关论文
共 50 条
  • [31] Some evident Summation formulas
    Sasho Kalajdzievski
    The Mathematical Intelligencer, 2000, 22 : 47 - 49
  • [32] On Combinatorial Extensions of Some Ramanujan’s Mock Theta Functions
    M. Goyal
    Ukrainian Mathematical Journal, 2020, 72 : 52 - 68
  • [33] A general class of Voronoi's and Koshliakov-Ramanujan's summation formulas involving dk(n)
    Yakubovich, Semyon
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2011, 22 (11) : 801 - 821
  • [34] On Combinatorial Extensions of Some Ramanujan's Mock Theta Functions
    Goyal, M.
    UKRAINIAN MATHEMATICAL JOURNAL, 2020, 72 (01) : 52 - 68
  • [35] ON SOME STRANGE SUMMATION FORMULAS
    GOSPER, RW
    ISMAIL, MEH
    ZHANG, R
    ILLINOIS JOURNAL OF MATHEMATICS, 1993, 37 (02) : 240 - 277
  • [36] SOME FINITE SUMMATION FORMULAS
    SRIVASTAVA, HM
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1974, 57 (3-4): : 166 - 169
  • [37] Some evident summation formulas
    Kalajdzievski, S
    MATHEMATICAL INTELLIGENCER, 2000, 22 (03): : 47 - 49
  • [38] SOME FORMULAS INVOLVING RAMANUJAN SUMS
    NICOL, CA
    CANADIAN JOURNAL OF MATHEMATICS, 1962, 14 (02): : 284 - &
  • [39] On Ramanujan's inversion formulas
    Gu, Zihui
    Lin, Guanhua
    Ye, Dongxi
    Zhang, Xiyu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 535 (01)
  • [40] Ramanujan Summation for Pascal's Triangle
    Kumar, A. Dinesh
    Sivaraman, R.
    CONTEMPORARY MATHEMATICS, 2024, 5 (01): : 817 - 825