Some extensions for Ramanujan’s circular summation formulas and applications

被引:0
|
作者
Ji-Ke Ge
Qiu-Ming Luo
机构
[1] Chongqing University of Science and Technology,School of Intelligent Technology and Engineering
[2] Chongqing Higher Education Mega Center,Department of Mathematics
[3] Chongqing Normal University,undefined
[4] Chongqing Higher Education Mega Center,undefined
来源
The Ramanujan Journal | 2021年 / 56卷
关键词
Elliptic functions; Jacobi’s theta functions; Ramanujan’s circular summation; Identities of Jacobi’s theta functions; 11F27; 11F20; 33E05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we give some extensions for Ramanujan’s circular summation formulas with the mixed products of two Jacobi’s theta functions. As applications, we also obtain many interesting identities of Jacobi’s theta functions.
引用
收藏
页码:491 / 518
页数:27
相关论文
共 50 条
  • [1] Some extensions for Ramanujan's circular summation formulas and applications
    Ge, Ji-Ke
    Luo, Qiu-Ming
    RAMANUJAN JOURNAL, 2021, 56 (02): : 491 - 518
  • [2] Some extensions for Ramanujan's circular summation formula
    Ge, Ji-Ke
    Luo, Qiu-Ming
    arXiv, 2019,
  • [3] Some Ramanujan-type circular summation formulas
    Ge, Ji-Ke
    Luo, Qiu-Ming
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [4] Some Ramanujan-type circular summation formulas
    Ji-Ke Ge
    Qiu-Ming Luo
    Advances in Difference Equations, 2020
  • [5] EXTENSIONS OF SEVERAL SUMMATION FORMULAS OF RAMANUJAN USING THE CALCULUS OF RESIDUES
    FORRESTER, PJ
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1983, 13 (04) : 557 - 572
  • [6] Extensions of Ramanujan's two formulas for 1/π
    Wei, Chuanan
    Gong, Dianxuan
    JOURNAL OF NUMBER THEORY, 2013, 133 (07) : 2206 - 2216
  • [7] Noncommutative extensions of Ramanujan's 1ψ1 summation
    Schlosser, Michael
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2006, 24 : 94 - 102
  • [8] A note for Ramanujan's circular summation formula
    Luo, Qiu-Ming
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2015, 26 (08) : 567 - 585
  • [9] Some circular summation formulas for theta functions
    Yi Cai
    Si Chen
    Qiu-Ming Luo
    Boundary Value Problems, 2013
  • [10] Some circular summation formulas for theta functions
    Cai, Yi
    Chen, Si
    Luo, Qiu-Ming
    BOUNDARY VALUE PROBLEMS, 2013,