Some extensions for Ramanujan’s circular summation formulas and applications

被引:0
作者
Ji-Ke Ge
Qiu-Ming Luo
机构
[1] Chongqing University of Science and Technology,School of Intelligent Technology and Engineering
[2] Chongqing Higher Education Mega Center,Department of Mathematics
[3] Chongqing Normal University,undefined
[4] Chongqing Higher Education Mega Center,undefined
来源
The Ramanujan Journal | 2021年 / 56卷
关键词
Elliptic functions; Jacobi’s theta functions; Ramanujan’s circular summation; Identities of Jacobi’s theta functions; 11F27; 11F20; 33E05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we give some extensions for Ramanujan’s circular summation formulas with the mixed products of two Jacobi’s theta functions. As applications, we also obtain many interesting identities of Jacobi’s theta functions.
引用
收藏
页码:491 / 518
页数:27
相关论文
共 37 条
  • [1] Ahlgren S(2000)The sixth, eighth, ninth and tenth powers of Ramanujan theta function Proc. Am. Math. Soc. 128 1333-1338
  • [2] Boon M(1982)Additive decompositions of J. Phys. A Math. Gen. 15 3439-3440
  • [3] Glasser ML(1991)-functions of multiple arguments Trans. Am. Math. Soc. 323 691-701
  • [4] Zak J(2013)A cubic counterpart of Jacobi’s identity and the AGM Bound. Value Probl. 2013 59-507
  • [5] Zucker IJ(2014)Some circular summation formulas for the theta functions Integral Transform. Spec. Funct. 25 497-4514
  • [6] Borwein JM(2011)Some new circular summation formulas of theta functions Int. Math. Res. Not. 19 4471-1196
  • [7] Borwein PB(2010)Integer matrix exact covering systems and product identities for theta functions J. Number Theory 130 1190-641
  • [8] Cai Y(2006)On a new circular summation of theta functions J. Math. Anal. Appl. 316 628-8
  • [9] Chen S(2002)Circular summation of theta functions in Ramanujan’s Lost Notebook Proc. Am. Math. Soc. 130 1-354
  • [10] Luo Q-M(2001)The root lattice Ramanujan J. 5 353-3203