Existence theorems and Hyers-Ulam stability for a coupled system of fractional differential equations with p-Laplacian operator

被引:0
作者
Hasib Khan
Yongjin Li
Wen Chen
Dumitru Baleanu
Aziz Khan
机构
[1] Hohai University,College of Engineering, Mechanics and Materials
[2] Shaheed Benazir Bhutto University,Department of Mathematics
[3] Sun Yat-sen University,Department of Mathematics
[4] Çankaya University,Department of Mathematics
[5] Institute of Space Sciences,undefined
[6] University of Peshawar,undefined
来源
Boundary Value Problems | / 2017卷
关键词
Caputo’s fractional derivative; coupled system of FDEs; topological degree theory; existence and uniqueness; Hyers-Ulam stability;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the existence and uniqueness of solution (EUS) as well as Hyers-Ulam stability for a coupled system of FDEs in Caputo’s sense with nonlinear p-Laplacian operator. For this purpose, the suggested coupled system is transferred to an integral system with the help of four Green functions Gα1(t,s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{G}^{\alpha_{1}}(t,s)$\end{document}, Gβ1(t,s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{G}^{\beta_{1}}(t,s)$\end{document}, Gα2(t,s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{G}^{\alpha_{2}}(t,s)$\end{document}, Gβ2(t,s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{G}^{\beta_{2}}(t,s)$\end{document}. Then using topological degree theory and Leray-Schauder’s-type fixed point theorem, existence and uniqueness results are proved. An illustrative and expressive example is given as an application of the results.
引用
收藏
相关论文
共 122 条
[1]  
Area I(2016)A note on fractional logistic equation Physica A 444 182-187
[2]  
Losada J(2016)Stability of solutions to impulsive Caputo fractional differential equations Electron. J. Differ. Equ. 2016 383-394
[3]  
Nieto JJ(2015)Fractional-order boundary value problem with Sturm-Liouville boundary conditions Electron. J. Differ. Equ. 2015 433-482
[4]  
Agarwal R(2016)Fractional Navier boundary value problems Bound. Value Probl. 2016 2651-2662
[5]  
Hristova S(2016)Linearized asymptotic stability for fractional differential equations Electron. J. Qual. Theory Differ. Equ. 2016 4623-4637
[6]  
O’Regan D(2016)Fractional modelling arising in unidirectional propagation of long waves in dispersive media Adv. Nonlinear Anal. 5 28-37
[7]  
Anderson D(2015)Existence and Ulam-Hyers stability of ODEs involving two Caputo fractional derivatives Electron. J. Qual. Theory Differ. Equ. 2015 892-903
[8]  
Avery R(2015)Existence criterion for the solutions of fractional order Bound. Value Probl. 2015 953-974
[9]  
Bachar I(2013)-Laplacian boundary value problems Oberwolfach Rep. 10 955-966
[10]  
Maagli H(2017)Mini-Workshop: the Bound. Value Probl. 2017 121-139