Stability analysis of lower dimensional gravastars in noncommutative geometry

被引:0
作者
Ayan Banerjee
Sudan Hansraj
机构
[1] Jadavpur University,Department of Mathematics
[2] University of KwaZulu-Natal,Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science
来源
The European Physical Journal C | 2016年 / 76卷
关键词
Black Hole; Event Horizon; Black Hole Solution; Noncommutative Geometry; Gravitational Wave Signature;
D O I
暂无
中图分类号
学科分类号
摘要
The Bañados et al. (Phys. Rev. Lett 69:1849, 1992), black hole solution is revamped from the Einstein field equations in (2 + 1)-dimensional anti-de Sitter spacetime, in a context of noncommutative geometry (Phys. Rev. D 87:084014, 2013). In this article, we explore the exact gravastar solutions in three-dimensional anti-de Sitter space given in the same geometry. As a first step we derive BTZ solution assuming the source of energy density as point-like structures in favor of smeared objects, where the particle mass M, is diffused throughout a region of linear size α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{\alpha }$$\end{document} and is described by a Gaussian function of finite width rather than a Dirac delta function. We matched our interior solution to an exterior BTZ spacetime at a junction interface situated outside the event horizon. Furthermore, a stability analysis is carried out for the specific case when χ<0.214\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi < 0. 214$$\end{document} under radial perturbations about the static equilibrium solutions. To give theoretical support we are also trying to explore their physical properties and characteristics.
引用
收藏
相关论文
共 50 条
[21]   Riemannian manifolds in noncommutative geometry [J].
Lord, Steven ;
Rennie, Adam ;
Varilly, Joseph C. .
JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (07) :1611-1638
[22]   Hamiltonian gravity and noncommutative geometry [J].
Hawkins, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 187 (02) :471-489
[23]   Noncommutative geometry of multicore bions [J].
Joanna L. Karczmarek ;
Ariel Sibilia .
Journal of High Energy Physics, 2013
[24]   Noncommutative geometry and quiver algebras [J].
Crawley-Boevey, William ;
Etingof, Pavel ;
Ginzburg, Victor .
ADVANCES IN MATHEMATICS, 2007, 209 (01) :274-336
[25]   Noncommutative geometry of multicore bions [J].
Karczmarek, Joanna L. ;
Sibilia, Ariel .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (01)
[26]   Noncommutative geometry of the quantum disk [J].
Klimek, Slawomir ;
McBride, Matt ;
Peoples, J. Wilson .
ANNALS OF FUNCTIONAL ANALYSIS, 2022, 13 (03)
[27]   Missing the point in noncommutative geometry [J].
Nick Huggett ;
Fedele Lizzi ;
Tushar Menon .
Synthese, 2021, 199 :4695-4728
[28]   Hamiltonian Gravity and Noncommutative Geometry [J].
Eli Hawkins .
Communications in Mathematical Physics, 1997, 187 :471-489
[29]   Quasifolds, diffeology and noncommutative geometry [J].
Iglesias-Zemmour, Patrick ;
Prato, Elisa .
JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2021, 15 (02) :735-759
[30]   Noncommutative Riemannian geometry on graphs [J].
Majid, Shahn .
JOURNAL OF GEOMETRY AND PHYSICS, 2013, 69 :74-93