Stability analysis of lower dimensional gravastars in noncommutative geometry

被引:0
作者
Ayan Banerjee
Sudan Hansraj
机构
[1] Jadavpur University,Department of Mathematics
[2] University of KwaZulu-Natal,Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science
来源
The European Physical Journal C | 2016年 / 76卷
关键词
Black Hole; Event Horizon; Black Hole Solution; Noncommutative Geometry; Gravitational Wave Signature;
D O I
暂无
中图分类号
学科分类号
摘要
The Bañados et al. (Phys. Rev. Lett 69:1849, 1992), black hole solution is revamped from the Einstein field equations in (2 + 1)-dimensional anti-de Sitter spacetime, in a context of noncommutative geometry (Phys. Rev. D 87:084014, 2013). In this article, we explore the exact gravastar solutions in three-dimensional anti-de Sitter space given in the same geometry. As a first step we derive BTZ solution assuming the source of energy density as point-like structures in favor of smeared objects, where the particle mass M, is diffused throughout a region of linear size α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{\alpha }$$\end{document} and is described by a Gaussian function of finite width rather than a Dirac delta function. We matched our interior solution to an exterior BTZ spacetime at a junction interface situated outside the event horizon. Furthermore, a stability analysis is carried out for the specific case when χ<0.214\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi < 0. 214$$\end{document} under radial perturbations about the static equilibrium solutions. To give theoretical support we are also trying to explore their physical properties and characteristics.
引用
收藏
相关论文
共 50 条
  • [11] Noncommutative geometry and arithmetics
    Almeida, P.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2009, 16 (03) : 350 - 362
  • [12] Noncommutative geometry of foliations
    Kordyukov, Yuri A.
    JOURNAL OF K-THEORY, 2008, 2 (02) : 219 - 327
  • [13] Noncommutative geometry and arithmetics
    P. Almeida
    Russian Journal of Mathematical Physics, 2009, 16 : 350 - 362
  • [14] The (2+1)-dimensional charged gravastars
    Rahaman, Farook
    Usmani, A. A.
    Ray, Saibal
    Islam, Safiqul
    PHYSICS LETTERS B, 2012, 717 (1-3) : 1 - 5
  • [15] Zitterbewegung in noncommutative geometry
    Abyaneh, Mehran Zahiri
    Farhoudi, Mehrdad
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2019, 34 (09):
  • [16] Supersymmetry and noncommutative geometry
    Kalau, W
    Walze, M
    JOURNAL OF GEOMETRY AND PHYSICS, 1997, 22 (01) : 77 - 102
  • [17] The Geometry of Noncommutative Spacetimes
    Eckstein, Michal
    UNIVERSE, 2017, 3 (01)
  • [18] Stratified Noncommutative Geometry
    Ayala, David
    Mazel-Gee, Aaron
    Rozenblyum, Nick
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 297 (1485) : 1485
  • [19] Noncommutative geometry inspired rotating black string
    Singh, Dharm Veer
    Ali, Md Sabir
    Ghosh, Sushant G.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2018, 27 (12):
  • [20] Locality, causality and noncommutative geometry
    Chu, CS
    Furuta, K
    Inami, T
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2006, 21 (01): : 67 - 82