Modular invariance and uniqueness of TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document} deformed CFT

被引:0
作者
Ofer Aharony
Shouvik Datta
Amit Giveon
Yunfeng Jiang
David Kutasov
机构
[1] Weizmann Institute of Science,Department of Particle Physics and Astrophysics
[2] ETH Zürich,Institut für Theoretische Physik
[3] The Hebrew University,Racah Institute of Physics
[4] University of Chicago,EFI and Department of Physics
关键词
Conformal Field Theory; Effective Field Theories; Field Theories in Lower Dimensions;
D O I
10.1007/JHEP01(2019)086
中图分类号
学科分类号
摘要
Any two dimensional quantum field theory that can be consistently defined on a torus is invariant under modular transformations. In this paper we study families of quantum field theories labeled by a dimensionful parameter t, that have the additional property that the energy of a state at finite t is a function only of t and of the energy and momentum of the corresponding state at t = 0, where the theory becomes conformal. We show that under this requirement, the partition sum of the theory at t = 0 uniquely determines the partition sum (and thus the spectrum) of the perturbed theory, to all orders in t, to be that of a TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document} deformed CFT. Non-perturbatively, we find that for one sign of t (for which the energies are real) the partition sum is uniquely determined, while for the other sign we find non-perturbative ambiguities. We characterize these ambiguities and comment on their possible relations to holography.
引用
收藏
相关论文
共 81 条
[1]  
Smirnov FA(2017)On space of integrable quantum field theories Nucl. Phys. B 915 363-undefined
[2]  
Zamolodchikov AB(2016)-deformed 2D Quantum Field Theories JHEP 10 112-undefined
[3]  
Cavaglià A(2018)Moving the CFT into the bulk with JHEP 04 010-undefined
[4]  
Negro S(2017) and LST JHEP 07 122-undefined
[5]  
Szécsényi IM(2017)Asymptotic fragility, near AdS JHEP 09 136-undefined
[6]  
Tateo R(2017) holography and JHEP 12 155-undefined
[7]  
McGough L(2017)A solvable irrelevant deformation of AdS JHEP 10 108-undefined
[8]  
Mezei M(2018)/CFT Nucl. Phys. B 932 241-undefined
[9]  
Verlinde H(2018)Background independent holographic dual to JHEP 02 114-undefined
[10]  
Giveon A(2018) deformed CFT with large central charge in 2 dimensions JHEP 07 027-undefined