Continual updating and monitoring of clinical prediction models: time for dynamic prediction systems?

被引:63
作者
David A. Jenkins
Glen P. Martin
Matthew Sperrin
Richard D. Riley
Thomas P. A. Debray
Gary S. Collins
Niels Peek
机构
[1] The University of Manchester,Division of Informatics, Imaging and Data Science, Faculty of Biology, Medicine and Health
[2] Manchester Academic Health Science Centre,NIHR Greater Manchester Patient Safety Translational Research Centre
[3] The University of Manchester,Centre for Prognosis Research, School of Primary, Community and Social Care
[4] Keele University,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht
[5] Utrecht University,Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences
[6] University of Oxford,NIHR Manchester Biomedical Research Centre
[7] The University of Manchester,undefined
[8] Manchester Academic Health Science Centre,undefined
关键词
Clinical prediction models; Dynamic model; Validation; Model updating; Model development; Learning health system;
D O I
10.1186/s41512-020-00090-3
中图分类号
学科分类号
摘要
Clinical prediction models (CPMs) have become fundamental for risk stratification across healthcare. The CPM pipeline (development, validation, deployment, and impact assessment) is commonly viewed as a one-time activity, with model updating rarely considered and done in a somewhat ad hoc manner. This fails to address the fact that the performance of a CPM worsens over time as natural changes in populations and care pathways occur. CPMs need constant surveillance to maintain adequate predictive performance. Rather than reactively updating a developed CPM once evidence of deteriorated performance accumulates, it is possible to proactively adapt CPMs whenever new data becomes available. Approaches for validation then need to be changed accordingly, making validation a continuous rather than a discrete effort. As such, “living” (dynamic) CPMs represent a paradigm shift, where the analytical methods dynamically generate updated versions of a model through time; one then needs to validate the system rather than each subsequent model revision.
引用
收藏
相关论文
共 50 条
  • [21] Structural model updating and prediction variability using Pareto optimal models
    Christodoulou, Konstantinos
    Ntotsios, Evaggelos
    Papadimitriou, Costar
    Panetsos, Panagiods
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 198 (01) : 138 - 149
  • [22] The prediction of reverberation signals based on dynamic models
    Ren, Xinmin
    Wang, Ning
    Yao, Yuling
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS: WITH ASPECTS OF CONTEMPORARY INTELLIGENT COMPUTING TECHNIQUES, 2007, 2 : 1317 - +
  • [23] Transferring Clinical Prediction Models Across Hospitals and Electronic Health Record Systems
    Curth, Alicia
    Thoral, Patrick
    van den Wildenberg, Wilco
    Bijlstra, Peter
    de Bruin, Daan
    Elbers, Paul
    Fornasa, Mattia
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT I, 2020, 1167 : 605 - 621
  • [24] Adaptive sample size determination for the development of clinical prediction models
    Evangelia Christodoulou
    Maarten van Smeden
    Michael Edlinger
    Dirk Timmerman
    Maria Wanitschek
    Ewout W. Steyerberg
    Ben Van Calster
    Diagnostic and Prognostic Research, 5 (1)
  • [25] The Prediction of the Dynamic Behaviour of a Structure Using Model Updating and Frequency Based Substructuring
    Mirza, W. I. I. Wan Iskandar
    Rani, M. N. Abdul
    Yunus, M. A.
    Sani, M. S. M.
    Zin, M. S. Mohd
    1ST SOUTH ACEH INTERNATIONAL CONFERENCE ON ENGINEERING AND TECHNOLOGY (SAICOET), 2019, 506
  • [26] Flexible recalibration of binary clinical prediction models
    Dalton, Jarrod E.
    STATISTICS IN MEDICINE, 2013, 32 (02) : 282 - 289
  • [27] Clinical prediction models: diagnosis versus prognosis
    van Smeden, Maarten
    Reitsma, Johannes B.
    Riley, Richard D.
    Collins, Gary S.
    Moons, Karel G. M.
    JOURNAL OF CLINICAL EPIDEMIOLOGY, 2021, 132 : 142 - 145
  • [28] Clinical Prediction Models for Valvular Heart Disease
    Wessler, Benjamin S.
    Lundquist, Christine M.
    Koethe, Benjamin
    Park, Jinny G.
    Brown, Kristen
    Williamson, Tatum
    Ajlan, Muhammad
    Natto, Zuhair
    Lutz, Jennifer S.
    Paulus, Jessica K.
    Kent, David M.
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2019, 8 (20):
  • [29] A Unified Framework on Generalizability of Clinical Prediction Models
    Wan, Bohua
    Caffo, Brian
    Vedula, S. Swaroop
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2022, 5
  • [30] A clinical prediction rule for the diagnosis of coronary artery disease: validation, updating, and extension
    Genders, Tessa S. S.
    Steyerberg, Ewout W.
    Alkadhi, Hatem
    Leschka, Sebastian
    Desbiolles, Lotus
    Nieman, Koen
    Galema, Tjebbe W.
    Meijboom, W. Bob
    Mollet, Nico R.
    de Feyter, Pim J.
    Cademartiri, Filippo
    Maffei, Erica
    Dewey, Marc
    Zimmermann, Elke
    Laule, Michael
    Pugliese, Francesca
    Barbagallo, Rossella
    Sinitsyn, Valentin
    Bogaert, Jan
    Goetschalckx, Kaatje
    Schoepf, U. Joseph
    Rowe, Garrett W.
    Schuijf, Joanne D.
    Bax, Jeroen J.
    de Graaf, Fleur R.
    Knuuti, Juhani
    Kajander, Sami
    van Mieghem, Carlos A. G.
    Meijs, Matthijs F. L.
    Cramer, Maarten J.
    Gopalan, Deepa
    Feuchtner, Gudrun
    Friedrich, Guy
    Krestin, Gabriel P.
    Hunink, M. G. Myriam
    EUROPEAN HEART JOURNAL, 2011, 32 (11) : 1316 - 1330